This paper presents a new geometry-based method to determine if a cable-driven robot operating in a d-degree-of-freedom workspace (2d6) with nd cables can generate a given set of wrenches in a given pose, considering acceptable minimum and maximum tensions in the cables. To this end, the fundamental nature of the available wrench set is studied. The latter concept, defined here, is closely related to similar sets introduced by Ebert-Uphoff and co-workers (2004, “Force-Feasible Workspace Analysis for Underconstrained, Point-Mass Cable Robots,” IEEE Trans. Rob. Autom., 5, pp. 4956–4962; 2007, “Workspace Optimization of a Very Large Cable-Driven Parallel Mechanism for a Radiotelescope Application,” Proceedings of the ASME IDETC/CIE Mechanics and Robotics Conference, Las Vegas, NV). It is shown that the available wrench set can be represented mathematically by a zonotope, a special class of convex polytopes. Using the properties of zonotopes, two methods to construct the available wrench set are discussed. From the representation of the available wrench set, computationally efficient and noniterative tests are presented to verify if this set includes the task wrench set, the set of wrenches needed for a given task.

1.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
, 1993, “
The NIST Robocrane
,”
J. Rob. Syst.
0741-2223,
10
(
5
), pp.
709
724
.
2.
Kawamura
,
S.
,
Choe
,
W.
,
Tanaka
,
S.
, and
Pandian
,
S.
, 1995, “
Development of an Ultrahigh Speed Robot FALCON Using Wire Drive System
,”
IEEE Trans. Rob. Autom.
1042-296X,
1
, pp.
215
220
.
3.
Cone
,
L. L.
, 1985, “
Skycam, An Aerial Robotic Camera System
,”
BYTE
0360-5280,
10
, pp.
122
132
.
4.
Behzadipour
,
S.
, 2009, “
Kinematics and Dynamics of a Self-Stressed Cartesian Cable-Driven Mechanism
,”
ASME J. Mech. Des.
0161-8458,
131
(
6
), p.
061005
.
5.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
, 2009, “
Antagonistic Variable Stiffness Elements
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
1746
1758
.
6.
Ottaviano
,
E.
,
Ceccarelli
,
M.
, and
Palmucci
,
F.
, 2009, “
An Application of CaTraSys, a Cable-Based Parallel Measuring System for an Experimental Characterization of Human Walking
,”
Robotica
0263-5747, published online by Cambridge University Press.
7.
Merlet
,
J. -P.
, in “
Kinematics of the Wire-Driven Parallel Robot MARIONET Using Linear Actuators
,”
2008 IEEE International Conference on Robotics and Automation
, ICRA 2008, May 19–23, Pasadena, CA, pp.
3857
3862
.
8.
Bosscher
,
P.
, and
Ebert-Uphoff
,
I.
, 2004, “
Wrench-Based Analysis of Cable-Driven Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
, pp.
4950
4955
.
9.
Bouchard
,
S.
, and
Gosselin
,
C.
, 2007, “
Workspace Optimization of a Very Large Cable-Driven Parallel Mechanism for a Radiotelescope Application
,”
Proceedings of the ASME IDETC/CIE Mechanics and Robotics Conference
, Las Vegas, NV.
10.
Hassan
,
M.
, and
Khajepour
,
A.
, 2007, “
Minimization of Bounded Cable Tensions in Cable-Based Parallel Manipulators
,”
Proceedings of the ASME IDETC/CIE Mechanics and Robotics Conference
, Las Vegas, NV.
11.
Oh
,
S.
, and
Agrawal
,
S.
, 2003, “
Cable-Suspended Planar Parallel Robots With Redundant Cables: Controllers With Positive Cable Tensions
,”
IEEE Trans. Rob. Autom.
1042-296X,
3
, pp.
3023
3028
.
12.
Oh
,
S. -R.
, and
Agrawal
,
S. K.
, 2005, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
457
465
.
13.
Pham
,
C. B.
,
Yeo
,
S. H.
, and
Yang
,
G.
, 2005, “
Tension Analysis of Cable-Driven Mechanisms
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, Canada, pp.
257
262
.
14.
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
, 2004, “
Force-Feasible Workspace Analysis for Underconstrained, Point-Mass Cable Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
, pp.
4956
4962
.
15.
Roberts
,
R. G.
,
Graham
,
T.
, and
Lippitt
,
T.
, 1998, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Rob. Syst.
0741-2223,
15
(
10
), pp.
581
597
.
16.
Verhoeven
,
R.
, and
Hiller
,
M.
, 2002, “
Tension Distribution in Tendon-Based Stewart Platforms
,”
Proceedings of the Eighth International Symposium on Advances in Robot Kinematics
, Caldes de Malavella, Spain, pp.
117
124
.
17.
Williams
,
R.
, and
Gallina
,
P.
, 2002, “
Planar Cable-Direct-Driven Robots: Design for Wrench Exertion
,”
J. Intell. Robotic Syst.
0921-0296,
35
, pp.
203
219
.
18.
Zlatanov
,
D.
,
Agrawal
,
S.
, and
Gosselin
,
C.
, 2005, “
Convex Cones in Screw Spaces
,”
Mech. Mach. Theory
0094-114X,
40
(
6
), pp.
710
727
.
19.
Gouttefarde
,
M.
, 2005, “
Analyse de l’espace des poses polyvalentes des mécanismes parallèles entraînés par câbles
,” Ph.D. thesis, Université Laval, Canada.
20.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
, 2004, “
On the Properties and the Determination of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
Proceedings of the ASME IDETC/CIE Mechanics and Robotics Conference
, Salt Lake City, UT.
21.
Gouttefarde
,
M.
,
Merlet
,
J.
, and
Daney
,
D.
, 2007, “
Wrench-Feasible Workspace of Parallel Cable-Driven Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Rome, Italy, pp.
1492
1497
.
22.
Oh
,
S. -R.
, and
Agrawal
,
S. K.
, 2005b, “
Guaranteed Reachable Domain and Control Design for a Cable Robot Subject to Input Constraints
,”
Proceedings of the American Control Conference
, Portland, OR, pp.
3379
3384
.
23.
Stump
,
E.
, and
Kumar
,
V.
, 2004, “
Workspace Delineation of Cable-Actuated Parallel Manipulators
,”
Proceedings of the ASME International Design Engineering Technical Conferences, Mechanics and Robotics Conference
, Salt Lake City, UT.
24.
Diao
,
X.
, and
Ma
,
O.
, 2009, “
Force-Closure Analysis of 6-DOF Cable Manipulators With Seven or More Cables
,”
Robotica
0263-5747,
27
, pp.
209
215
.
25.
Gouttefarde
,
M.
, 2008, “
Characterizations of Fully Constrained Poses of Parallel Cable-Driven Robots: A Review
,”
Proceedings of the ASME Mechanisms and Robotics Conference
, Brooklyn, NY.
27.
Deschênes
,
J. -D.
,
Lambert
,
P.
,
Perreault
,
S.
,
Martel-Brisson
,
N.
,
Zoso
,
N.
,
Zaccarin
,
A.
,
Hébert
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C. M.
, 2007, “
A Cable-Driven Parallel Mechanism for Capturing Object Appearance From Multiple Viewpoints
,”
Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling
, Montréal, Canada.
28.
Borgstrom
,
H.
,
Stealey
,
M.
,
Batalin
,
M. A.
, and
Kaiser
,
J. W.
, 2006, “
NIMSRD-3D: A Novel Rapidly Deployable Robot for 3-Dimensional Applications
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing, China.
29.
Perreault
,
S.
, and
Gosselin
,
C.
, 2007, “
Cable-Driven Parallel Mechanisms: Application to a Locomotion Interface
,”
Proceedings of the ASME IDETC/CIE Mechanics and Robotics Conference
, Las Vegas, NV.
30.
Grünbaum
,
B.
, 2003,
Convex Polytopes
,
Springer
,
New York
.
31.
McMullen
,
P.
, 1971, “
On Zonotopes
,”
Trans. Am. Math. Soc.
0002-9947,
159
, pp.
91
109
.
32.
de Berg
,
M.
, 2000,
Computational Geometry: Algorithms and Applications
,
Springer
,
New York
.
33.
Ziegler
,
G.
, 1995,
Lectures on Polytopes
,
Springer-Verlag
,
Berlin
.
34.
Onn
,
S.
, and
Rothblum
,
U. G.
, 2007, “
The Use of Edge-Directions and Linear Programming to Enumerate Vertices
,”
J. Comb. Optim.
1382-6905,
14
(
2–3
), pp.
153
164
.
35.
Barber
,
C.
,
Dobkin
,
D.
, and
Huhdanpaa
,
H.
, 1996, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
0098-3500,
22
(
4
), pp.
469
483
.
You do not currently have access to this content.