Abstract

A closed-chain legged robot with a reconfigurable trunk is designed, and its continuous and collision-free obstacle-crossing strategy is presented to enhance terrain adaptability and intelligence, ultimately enabling autonomous obstacle crossing. The design integrates four coupled Watt-I type linkages that form a quadruped unit. Motors link four quadruped units to the robot's trunk, enabling the overall reconfigurability of the unit. The kinematic model is analyzed, and the dimensions of the leg components are optimized. Finally, the foot trajectory analysis is performed. Obstacles are categorized according to their scale based on the analysis of foot-endpoint trajectories. For small-scale obstacles, gait is planned through preplanned posture mapping relationships, while a stride length planning algorithm is designed to plan the obstacle-crossing gait for large-scale obstacles. The collision-free obstacle-crossing strategy is achieved by controlling the heights of the maximum and minimum effective crossing points, the feasibility of which is confirmed via simulations and experimental studies.

References

1.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
IFAC Proc. Volumes
,
41
(
2
), pp.
10822
10825
.
2.
Simon
,
P.
,
2015
, “
Military Robotics: Latest Trends and Spatial Grasp Solutions
,”
Int. J. Adv. Res. Artif. Intell.
,
4
(
4
), pp.
9
18
.
3.
Semini
,
C.
,
Barasuol
,
V.
,
Goldsmith
,
J.
,
Frigerio
,
M.
,
Focchi
,
M.
,
Gao
,
Y.
, and
Caldwell
,
D. G.
,
2016
, “
Design of the Hydraulically-Actuated, Torque-Controlled Quadruped Robot HyQ2Max
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
635
646
.
4.
Semini
,
C.
,
Barasuol
,
V.
,
Focchi
,
M.
,
Boelens
,
C.
,
Emara
,
M. H.
,
Casella
,
S.
,
Villarreal
,
O.
, et al
,
2020
, “
Brief Introduction to the Quadruped Robot HyQReal
,”
Istituto di Robotica e Macchine Intelligenti (I-RIM)
.
5.
Hutter
,
M.
,
Gehring
,
C.
,
Lauber
,
A.
,
Günther
,
F.
,
Bellicoso
,
D.
,
Tsounis
,
V.
,
Fankhauser
,
P.
, et al
,
2017
, “
ANYMal—Toward Legged Robots for Harsh Environments
,”
Adv. Robot.
,
31
(
17
), pp.
918
931
.
6.
Hoeller
,
D.
,
Rudin
,
N.
,
Sako
,
D.
, and
Hutter
,
M.
,
2024
, “
ANYmal Parkour: Learning Agile Navigation for Quadrupedal Robots
,”
Sci. Robot.
,
9
(
88
), p.
eadi7566
.
7.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2013
, “
Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3307
3312
.
8.
Seok
,
S.
,
Wang
,
A.
,
Michael Chuah
,
M. Y.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D. M.
,
Lang
,
J. H.
, and
Kim
,
S.
,
2014
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
.
9.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Carlo
,
J. D.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2245
2252
.
10.
Miller
,
I. D.
,
Cohen
,
A.
,
Kulkarni
,
A.
,
Laney
,
J. D.
,
Taylor
,
C. J.
,
Kumar
,
V. R.
,
Cladera Ojeda
,
F.
, et al
,
2019
, “
Mine Tunnel Exploration Using Multiple Quadrupedal Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2840
2847
.
11.
Valsecchi
,
G.
,
Rudin
,
N.
,
Nachtigall
,
L.
,
Mayer
,
K.
,
Tischhauser
,
F.
, and
Hutter
,
M.
,
2023
, “
Barry: A High-Payload and Agile Quadruped Robot
,”
IEEE Robot. Autom. Lett.
,
8
(
11
), pp.
6939
6946
.
12.
Shieh
,
W. B.
,
Tsai
,
L. W.
,
Azarm
,
S.
, and
Tits
,
A. L.
,
1996
, “
Multiobjective Optimization of a Leg Mechanism With Various Spring Configurations for Force Reduction
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
179
185
.
13.
Lokhande
,
N. G.
, and
Emche
,
V. B.
,
2013
, “
Mechanical Spider by Using Klann Mechanism
,”
Int. J. Med. Chem. Anal.
,
1
(
5
), pp.
13
16
.
14.
Wang
,
Z.
,
Dong
,
E.
,
Xu
,
M.
, and
Yang
,
J.
,
2015
, “
Circling Turning Locomotion of a New Multiple Closed-Chain-Legs Robot With Hybrid-Driven Mechanism
,”
Adv. Robot.
,
29
(
24
), pp.
1637
1648
.
15.
Nansai
,
S.
,
Rojas
,
N.
,
Elara
,
M. R.
,
Sosa
,
R.
, and
Iwase
,
M.
,
2015
, “
On a Jansen Leg With Multiple Gait Patterns for Reconfigurable Walking Platforms
,”
Adv. Mech. Eng.
,
7
(
3
), p.
1687814015573824
.
16.
Wu
,
J.
,
Yao
,
Y.
,
Li
,
Y.
,
Wang
,
S.
, and
Ruan
,
Q.
,
2019
, “
Design and Analysis of a Sixteen-Legged Vehicle With Reconfigurable Close-Chain Leg Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
055001
.
17.
Fedorov
,
D.
, and
Birglen
,
L.
,
2017
, “
Design of a Self-Adaptive Robotic Leg Using a Triggered Compliant Element
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1444
1451
.
18.
Wu
,
J.
, and
Yao
,
Y.
,
2018
, “
Design and Analysis of a Novel Walking Vehicle Based on Leg Mechanism With Variable Topologies
,”
Mech. Mach. Theory
,
128
, pp.
663
681
.
19.
Ruan
,
Q.
,
Wu
,
J. X.
, and
Yao
,
Y. A.
,
2021
, “
Design and Analysis of a Multi-Legged Robot With Pitch Adjustive Units
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
64
64
.
20.
Jianxu
,
W.
,
Hui
,
Y.
,
Li
,
R.
,
Ruan
,
Q.
,
Yan
,
S.
, and
Yao
,
Y.
,
2021
, “
Design and Analysis of a Novel Octopod Platform With a Reconfigurable Trunk
,”
Mech. Mach. Theory
,
156
, p.
104134
.
21.
Sen
,
W.
,
Yanan
,
Y.
, and
Wu
,
J. X.
,
2020
, “
Design and Analysis of a Novel Adjustable Closed-Chain Multi-Legged Robot
,”
J. Mech. Eng.
,
56
(
19
), pp.
191
199
.
22.
Hongsen
,
Y.
,
2002
, “Creative Design Methodology,”
Creative Design of Mechanical Devices
,
Z.
Yamin
, ed.,
China Machine Press
,
Beijing, China
, pp.
97
106
.
You do not currently have access to this content.