Abstract

To address the issues of strong motion coupling, high control difficulty, and insufficient degrees-of-freedom (DoFs) in existing bio-syncretic parallel hip exoskeletons, a design scheme characterized by weak coupling is proposed. A configuration synthesis method for weakly coupled parallel hip exoskeletons is introduced by deriving the conditions that the transmission wrench screws (TWSs) in each limb must satisfy. Furthermore, to tackle the problem of limited workspace in parallel hip exoskeletons, a design method aimed at increasing the operational workspace is presented. By applying the proposed methods to the configuration synthesis of the hip exoskeleton, several weakly coupled configurations with expanded workspaces are generated. Finally, the correctness and effectiveness of the proposed methods are validated through case analyses.

References

1.
Martini
,
E.
,
Crea
,
S.
,
Parri
,
A.
,
Bastiani
,
L.
,
Faraguna
,
U.
,
McKinney
,
Z.
,
Molino-Lova
,
R.
, et al
,
2019
, “
Gait Training Using a Robotic Hip Exoskeleton Improves Metabolic Gait Efficiency in the Elderly
,”
Sci. Rep. UK
,
9
(
1
), p.
7157
.
2.
Chen
,
B.
,
Zi
,
B.
,
Qin
,
L.
, and
Pan
,
Q.
,
2020
, “
State-of-the-Art Research in Robotic hip Exoskeletons: A General Review
,”
J. Orthop. Transl.
,
20
, pp.
4
13
.
3.
Buesing
,
C.
,
Fisch
,
G.
,
O’Donnell
,
M.
,
Shahidi
,
I.
,
Thomas
,
L.
,
Mummidisetty
,
C. K.
,
Williams
,
K. J.
, et al
,
2015
, “
Effects of a Wearable Exoskeleton Stride Management Assist System (SMA®) on Spatiotemporal Gait Characteristics in Individuals After Stroke: A Randomized Controlled Trial
,”
J. Neuroeng. Rehabil.
,
12
(
1
), pp.
1
14
.
4.
Zhang
,
T.
,
Tran
,
M.
, and
Huang
,
H.
,
2018
, “
Design and Experimental Verification of Hip Exoskeleton With Balance Capacities for Walking Assistance
,”
IEEE/ASME Trans. Mech.
,
23
(
1
), pp.
274
285
.
5.
Chiu
,
V. L.
,
Raitor
,
M.
, and
Collins
,
S. H.
,
2021
, “
Design of a hip Exoskeleton With Actuation in Frontal and Sagittal Planes
,”
IEEE Trans. Med. Robot Bio.
,
3
(
3
), pp.
773
782
.
6.
Song
,
J.
,
Zhu
,
A.
,
Tu
,
Y.
,
Zou
,
J.
, and
Zhang
,
X.
,
2023
, “
Cable-Driven and Series Elastic Actuation Coupled for a Rigid-Flexible Spine-Hip Assistive Exoskeleton in Stoop-Lifting Event
,”
IEEE/ASME Trans. Mechatron.
,
28
(
5
), pp.
2852
2863
.
7.
Kang
,
I.
,
Peterson
,
R. R.
,
Herrin
,
K. R.
,
Mazumdar
,
A.
, and
Young
,
A. J.
,
2023
, “
Design and Validation of a Torque-Controllable Series Elastic Actuator-Based Hip Exoskeleton for Dynamic Locomotion
,”
J. Mech. Robot.
,
15
(
2
), p.
021007
.
8.
Xiloyannis
,
M.
,
Alicea
,
R.
,
Georgarakis
,
A. M.
,
Haufe
,
F. L.
,
Wolf
,
P.
,
Masia
,
L.
, and
Riener
,
R.
,
2021
, “
Soft Robotic Suits: State of the Art, Core Technologies, and Open Challenges
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1343
1362
.
9.
Zhou
,
L.
,
Chen
,
W.
,
Bai
,
S.
,
Wang
,
J.
,
Zhao
,
Z.
,
Zhao
,
X.
, and
Yu
,
X.
,
2022
, “
Lower Limb Exoskeleton Parasitic Force Modeling and Minimizing With an Adaptive Trajectory Controller
,”
Mech. Mach. Theory
,
170
, p.
104731
.
10.
Xu
,
J.
,
Niu
,
Y.
, and
Liu
,
F.
,
2024
, “
Design and Verification of Parallel Hip Exoskeleton Considering Output Torque Anisotropy
,”
J. Bionic Eng.
,
21
(
3
), pp.
1305
1320
.
11.
Li
,
J.
,
Li
,
S.
,
Zhang
,
L.
,
Tao
,
C.
, and
Ji
,
R.
,
2018
, “
Position Solution and Kinematic Interference Analysis of a Novel Parallel Hip-Assistive Mechanism
,”
Mech. Mach. Theory
,
120
, pp.
265
287
.
12.
Li
,
J.
,
Zhang
,
L.
,
Dong
,
M.
,
Zuo
,
S.
,
He
,
Y.
, and
Zhang
,
P.
,
2020
, “
Velocity and Force Transfer Performance Analysis of a Parallel Hip Assistive Mechanism
,”
Robotica
,
38
(
4
), pp.
747
759
.
13.
Wang
,
X.
,
Guo
,
S.
,
Qu
,
B.
, and
Bai
,
S.
,
2022
, “
Design and Experimental Verification of a Hip Exoskeleton Based on Human–Machine Dynamics for Walking Assistance
,”
IEEE Trans. Hum.-Mach. Syst.
,
53
(
1
), pp.
85
97
.
14.
Zhang
,
W.
,
Zhang
,
S.
,
Ceccarelli
,
M.
, and
Shi
,
D.
,
2016
, “Design and Kinematic Analysis of a Novel Metamorphic Mechanism for Lower Limb Rehabilitation,”
Proceedings of Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J.
Dai
, eds.,
Springer
,
Berlin
, pp.
545
558
.
15.
Li
,
S.
,
Wang
,
S.
,
Li
,
H.
,
Wang
,
Y.
, and
Chen
,
S.
,
2023
, “
Type Synthesis of Fully Decoupled Three Translational Parallel Mechanism With Closed-Loop Units and High Stiffness
,”
Chin. J. Mech. Eng.
,
36
(
1
), p.
113
.
16.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations
,”
Eur. J. Mech. A-Solid.
,
23
(
6
), pp.
1021
1039
.
17.
Yang
,
S.
,
Sun
,
T.
, and
Huang
,
T.
,
2017
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
18.
Ye
,
W.
,
He
,
L.
, and
Li
,
Q.
,
2018
, “
A New Family of Symmetrical 2T2R Parallel Mechanisms Without Parasitic Motion
,”
J. Mech. Rob.
,
10
(
1
), p.
011006
.
19.
Wang
,
W.
, and
Chen
,
X.
,
2019
, “
Design Methodology for Wheel Corner Module Topology Based on Position and Orientation Characteristics
,”
Mech. Mach. Theory
,
136
, pp.
122
140
.
20.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Synthesis and Analysis of a Group of 3-Degree-of-Freedom Partially Decoupled Parallel Manipulators
,”
J. Mech. Des.
,
126
(
2
), pp.
301
306
.
21.
Tian
,
C.
,
Fang
,
Y.
, and
Ge
,
Q. J.
,
2019
, “
Design and Analysis of a Partially Decoupled Generalized Parallel Mechanism for 3T1R Motion
,”
Mech. Mach. Theory
,
140
, pp.
211
232
.
22.
Shen
,
H.
,
Zhao
,
Y.
,
Li
,
J.
,
Wu
,
G.
, and
Chablat
,
D.
,
2021
, “
A Novel Partially-Decoupled Translational Parallel Manipulator With Symbolic Kinematics, Sin-Gularity Identification and Workspace Determination
,”
Mech. Mach. Theory
,
164
, p.
104388
.
23.
Kim
,
J.
,
Hwang
,
J. C.
,
Kim
,
J. S.
,
Iurascu
,
C. C.
,
Park
,
F. C.
, and
Cho
,
Y. M.
,
2002
, “
Eclipse II: A New Parallel Mechanism Enabling Continuous 360-Degree Spinning Plus Three-Axis Translational Motions
,”
IEEE Trans. Robot. Autom.
,
18
(
3
), pp.
367
373
.
24.
Kim
,
S. H.
,
Jeon
,
D.
,
Shin
,
H. P.
,
In
,
W.
, and
Kim
,
J.
,
2009
, “
Design and Analysis of Decoupled Parallel Mechanism With Redundant Actuator
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
93
99
.
25.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2T and 3R3T Parallel Mechanisms with High Rotational Capability
,”
J. Mech. Rob.
,
8
(
1
), p.
011004
.
26.
Guo
,
S.
,
Ye
,
W.
,
Qu
,
H.
,
Zhang
,
D.
, and
Fang
,
Y.
,
2016
, “
A Serial of Novel Four Degrees of Freedom Parallel Mechanisms With Large Rotational Workspace
,”
Robotica
,
34
(
4
), pp.
764
776
.
27.
Wang
,
C.
,
Fang
,
Y.
, and
Fang
,
H.
,
2017
, “
Novel 2R3T and 2R2T Parallel Mechanisms With High Rotational Capability
,”
Robotica
,
35
(
2
), pp.
401
418
.
You do not currently have access to this content.