Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Principle of transference is very important in the kinematic analysis of spatial mechanisms, which enables the extension of point transformations to line transformations inbuilt with the dual mapping. An ideal conceptualization for applying kinematic calibration is to extend the solution of the rotational equations to the kinematic equations via dual mapping. However, this necessitates an analytic representation of the rotational solution, a task that is typically unachievable. Duffy and his coauthors used the principle of transference to generate the spatial equations from the spherical equations. Therefore, the application of the principle of transference to kinematic calibration allows one to start with the process of deriving and solving the equations of kinematics. In this article, the kinematic calibration problem is used as an application to discuss the implementation process of principle of transference in detail. First, the process of transforming the rotational equations into a linear null-space computational system based on quaternion matrix operators is reviewed. Then, fusing the dual matrix operators converts the kinematic equations into the dual linear system of equations, which reflects the forward process of principle of transference. Finally, eliminating the dual operations in the dual linear system of equations turns it into a high-dimensional linear null-space computational system, which embodies the inverse process of principle of transference. This article provides a new closed-form solution for the AX=YB problem.

References

1.
Zhuang
,
H.
,
Roth
,
Z. S.
, and
Sudhakar
,
R.
,
1994
, “
Simultaneous Robot/World and Tool/Flange Calibration by Solving Homogeneous Transformation Equations of the Form AX=YB
,”
IEEE Trans. Robot. Autom.
,
10
(
4
), pp.
549
554
.
2.
Dornaika
,
F.
, and
Horaud
,
R.
,
1998
, “
Simultaneous Robot-World and Hand-Eye Calibration
,”
IEEE Trans. Robot. Autom.
,
14
(
4
), pp.
617
622
.
3.
Wu
,
J.
,
Wang
,
M.
,
Jiang
,
Y.
,
Yi
,
B.
,
Fan
,
R.
, and
Liu
,
M.
,
2022
, “
Simultaneous Hand–Eye/Robot–World/Camera–IMU Calibration
,”
IEEE-ASME Trans. Mechatron.
,
27
(
4
), pp.
2278
2289
.
4.
Strobl
,
K. H.
, and
Hirzinger
,
G.
,
2006
, “
Optimal Hand-Eye Calibration
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
4647
4653
.
5.
Wu
,
L.
,
Wang
,
J.
,
Qi
,
L.
,
Wu
,
K.
,
Ren
,
H.
, and
Meng
,
M. Q.
,
2016
, “
Simultaneous Hand–Eye, Tool–Flange, and Robot-Robot Calibration for Comanipulation by Solving the AXB=YCZ Problem
,”
IEEE Trans. Robot.
,
32
(
2
), pp.
413
428
.
6.
Shah
,
M.
,
2013
, “
Solving the Robot-World/Hand-Eye Calibration Problem Using the Kronecker Product
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031007
.
7.
Wang
,
G.
,
Li
,
W.
,
Jiang
,
C.
,
Zhu
,
D.
,
Xie
,
H.
,
Liu
,
X.
, and
Ding
,
H.
,
2021
, “
Simultaneous Calibration of Multicoordinates for a Dual-Robot System by Solving the AXB=YCZ Problem
,”
IEEE Trans. Robot.
,
37
(
4
), pp.
1172
1185
.
8.
Wang
,
X.
, and
Song
,
H.
,
2022
, “
Optimal Robot-World and Hand-Eye Calibration With Rotation and Translation Coupling
,”
Robotica
,
40
(
9
), pp.
2953
2968
.
9.
Li
,
A.
,
Wang
,
L.
, and
Wu
,
D.
,
2010
, “
Simultaneous Robot-World and Hand-Eye Calibration Using Dual-Quaternions and Kronecker Product
,”
Int. J. Phys. Sci.
,
5
(
10
), pp.
1530
1536
.
10.
Fu
,
Z.
,
Pan
,
J.
,
Spyrakos-Papastavridis
,
E.
,
Chen
,
X.
, and
Li
,
M.
,
2020
, “
A Dual Quaternion-Based Approach for Coordinate Calibration of Dual Robots in Collaborative Motion
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4086
4093
.
11.
Condurache
,
D.
, and
Ciureanu
,
I.
,
2019
, “
A Novel Solution for AX=YB Sensor Calibration Problem Using Dual Lie Algebra
,”
2019 6th International Conference on Control, Decision and Information Technologies (CoDIT
),
Paris, France
,
Apr. 23–26
, pp.
302
307
.
12.
Cohen
,
A.
, and
Shoham
,
M.
,
2020
, “
Hyper Dual Quaternions Representation of Rigid Bodies Kinematics
,”
Mech. Mach. Theory
,
150
, p.
103861
.
13.
Condurache
,
D.
,
2021
, “
Singularity-Free Extraction of a Dual Quaternion From Orthogonal Dual Tensor
,”
Advances in Robot Kinematics 2020
,
J.
Lenarčič
and
B.
Siciliano
, eds.,
Springer International Publishing
, pp.
142
149
.
14.
Wang
,
X.
,
Sun
,
H.
,
Liu
,
C.
, and
Song
,
H.
,
2024
, “
Dual Quaternion Operations for Rigid Body Motion and Their Application to the Hand-Eye Calibration
,”
Mech. Mach. Theory
,
193
, p.
105566
.
15.
Daniilidis
,
K.
,
1998
, “
Hand-Eye Calibration Using Dual Quaternions
,”
Int. J. Robot. Res.
,
18
(
3
), pp.
286
298
.
16.
Condurache
,
D.
, and
Burlacu
,
A.
,
2016
, “
Orthogonal Dual Tensor Method for Solving the AX=XB Sensor Calibration Problem
,”
Mech. Mach. Theory
,
104
, pp.
382
404
.
17.
Ulrich
,
M.
, and
Steger
,
C.
,
2016
, “
Hand-Eye Calibration of SCARA Robots Using Dual Quaternions
,”
Pattern Recogn. Image Anal.
,
26
, pp.
231
239
.
18.
Wang
,
X.
, and
Song
,
H.
,
2024
, “
One-Step Solving the Hand–Eye Calibration by Dual Kronecker Product
,”
ASME J. Mech. Rob.
,
16
(
10
), p.
101008
.
19.
Clifford
,
W. K.
,
1871
, “
Preliminary Sketch of Biquaternions
,”
Proc. Lond. Math. Soc.
,
s1–4
(
1
), pp.
381
395
.
20.
Study
,
E.
,
1891
, “
Von Den Bewegungen Und Umlegungen
,”
Math. Ann.
,
39
, pp.
441
565
.
21.
Kotelnikov
,
A. P.
,
1895
, “
‘Screw Calculus and Some Applications to Geometry and Mechanics
,” Ph.D. thesis,
Annals of the Imperial University of Kazan
,
Kazan, Russia
.
22.
Rooney
,
J.
,
1977
, “
A Survey of Representations of Spatial Rotation About a Fixed Point
,”
Environ. Plann. B Plann. Des.
,
4
, pp.
185
210
.
23.
Rooney
,
J.
,
1978
, “
A Comparison of Representations of General Spatial Screw Displacement
,”
Environ. Plann. B Plann. Des.
,
5
, pp.
45
88
.
24.
Hsia
,
L. M.
, and
Yang
,
A. T.
,
1981
, “
On the Principle of Transference in Three-Dimensional Kinematics
,”
ASME J. Mech. Des.
,
103
(
3
), pp.
652
656
.
25.
Hiller
,
M.
, and
Woernle
,
C.
,
1984
, “
A Unified Representation of Spatial Displacements
,”
Mech. Mach. Theory
,
19
(
6
), pp.
477
486
.
26.
McCarthy
,
J. M.
,
1986
, “
Dual Orthogonal Matrices in Manipulator Kinematics
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
45
51
.
27.
Gu
,
Y. L.
, and
Luh
,
J.
,
1987
, “
Dual-Number Transformation and Its Applications to Robotics
,”
IEEE Trans. Robot. Autom.
,
3
(
6
), pp.
615
623
.
28.
Pradeep
,
A. K.
,
Yoder
,
P. J.
, and
Mukundan
,
R.
,
1989
, “
On the Use of Dual-Matrix Exponentials in Robotic Kinematics
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
57
66
.
29.
Martìnez
,
J. R.
, and
Duffy
,
J.
,
1993
, “
The Principle of Transference: History, Statement and Proof
,”
Mech. Mach. Theory
,
28
(
1
), pp.
165
177
.
30.
Chevallier
,
D. P.
,
1996
, “
On the Transference Principle in Kinematics: Its Various Forms and Limitations
,”
Mech. Mach. Theory
,
31
(
1
), pp.
57
76
.
31.
Cohen
,
A.
, and
Shoham
,
M.
,
2018
, “
Principle of Transference-an Extension to Hyper-Dual Numbers
,”
Mech. Mach. Theory
,
125
, pp.
101
110
.
32.
Condurache
,
D.
,
2022
, “
Higher-Order Relative Kinematics of Rigid Body and Multibody Systems. a Novel Approach With Real and Dual Lie Algebras
,”
Mech. Mach. Theory
,
176
, p.
104999
.
33.
Cheng
,
H.
, and
Thompson
,
S.
,
1997
, “
Dual Iterative Displacement Analysis of Spatial Mechanisms Using the cH Programming Language
,”
Mech. Mach. Theory
,
32
(
2
), pp.
193
207
.
34.
Duffy
,
J.
, and
Habib-Olahi
,
H.
,
1971
, “
A Displacement Analysis of Spatial Five-Link 3R-2C Mechanisms—I. On the Closures of the RCRCR Mechanism
,”
J. Mechanisms
,
6
(
3
), pp.
289
301
.
35.
Duffy
,
J.
, and
Habib-Olahi
,
H.
,
1971
, “
A Displacement Analysis of Spatial Five-Link 3R-2C Mechanisms Part 2: Analysis of the RRCRC Mechanism
,”
J. Mechanisms
,
6
(
4
), pp.
463
473
.
36.
Duffy
,
J.
,
1980
,
Analysis of Mechanisms and Robot Manipulators
,
John Wiley & Sons, Inc.
,
New York
.
37.
Sugimoto
,
K.
, and
Duffy
,
J.
,
1983
, “
Analysis of Five-Degree-of-Freedom Robot Arms
,”
ASME J. Mech., Trans., Automation
,
105
(
1
), pp.
23
27
.
38.
Wang
,
W.
,
Liu
,
Y.
,
Song
,
H.
, and
Du
,
Z.
,
2022
, “
A Novel Singular-Free Solution Based on Principle of Transfer Theory for the Hand-Eye Calibration Problem
,”
Mech. Mach. Theory
,
170
, p.
104723
.
39.
Pennestri
,
E.
, and
Valentini
,
P. P.
,
2009
,
Multibody Dynamics
(
Linear Dual Algebra Algorithms and their Application to Kinematics
), 1st ed.,
Springer
,
Dordrecht
, pp.
207
229
.
40.
Spring
,
K. W.
,
1986
, “
Euler Parameters and the Use of Quaternion Algebra in the Manipulation of Finite Rotations: A Review
,”
Mech. Mach. Theory
,
21
(
5
), pp.
365
373
.
41.
Dai
,
J. S.
,
2015
, “
Euler-Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
.
42.
Bauchau
,
O. A.
, and
Trainelli
,
L.
,
2003
, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
,
32
, pp.
71
92
.
43.
Condurache
,
D.
,
2021
, “
Dual Lie Algebra Representations of Rigid Body Dispacement and Motion. An Overview(I)
,” 2021 AAS/AIAA Astrodynamics Specialist Conference, Big Sky–Virtual, Aug. 9–11, pp.
AAS 21–627
.
44.
Condurache
,
D.
, and
Burlacu
,
A.
,
2014
, “
Dual Tensors Based Solutions for Rigid Body Motion Parameterization
,”
Mech. Mach. Theory
,
74
, pp.
390
412
.
45.
Selig
,
J. M.
,
2010
, “
Exponential and Cayley Maps for Dual Quaternions
,”
Adv. Appl. Clifford Algebr.
,
20
(
3–4
), pp.
923
936
.
46.
Wang
,
K.
, and
Dai
,
J. S.
,
2023
, “
The Dual Euler-Rodrigues Formula in Various Mathematical Forms and Their Intrinsic Relations
,”
Mech. Mach. Theory
,
181
, p.
105184
.
47.
Han
,
S.
, and
Bauchau
,
O. A.
,
2016
, “
Manipulation of Motion Via Dual Entities
,”
Nonlinear Dyn.
,
89
, pp.
509
524
.
48.
Chen
,
H. H.
,
1991
, “
A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry
,”
Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Maui, HI
,
June 3–6
, pp.
145
151
.
49.
Bauchau
,
O. A.
, Flexible Multibody Dynamics,
Springer
,
Dordrecht
.
50.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
51.
Tsai
,
R. Y.
, and
Lenz
,
R. K.
,
1989
, “
A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration
,”
IEEE Trans. Robot. Autom.
,
5
(
3
), pp.
345
358
.
52.
Fassi
,
I.
, and
Legnani
,
G.
,
2005
, “
Hand to Sensor Calibration: A Geometrical Interpretation of the Matrix Equation AX=XB
,”
J. Field Robotics
,
22
, pp.
497
506
.
53.
Legnani
,
G.
,
2018
, “
Optimization of Hand-to-Camera Calibration Using Geometrical Interpretation of Matrix Equation AX=XB
,”
Int. J. Robot. Autom.
,
33
(
1
).
54.
Wang
,
X.
,
Huang
,
J.
, and
Song
,
H.
,
2023
, “
Robot-World and Hand-Eye Calibration Based on Quaternion: A New Method and an Extension of Classic Methods, With Their Comparisons
,”
Mech. Mach. Theory
,
179
, p.
105127
.
55.
Wang
,
X.
,
Liu
,
C.
,
Sun
,
H.
, and
Song
,
H.
,
2024
, “
A Two-Step Solution for Robot-World Calibration Made Intelligible by Implementing Chasles’ Motion Decomposition in Ad(SE(3))
,”
Mech. Mach. Theory
,
191
, pp.
105522
.
56.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotics Manipulation
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.