Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Metamorphic mechanisms that can adapt to a variety of working conditions with distinct configurations, have gained widespread attention in recent years. However, it's always difficult to design metamorphic mechanisms with various motion branches. In this paper, the evolution design of a family of novel multiple metamorphic mechanisms is conducted by the inspiration from the concept of Assur group. Adopting some class II groups which are derived from the combination of three basic links, a novel 7R multiple metamorphic mechanism is first presented and analyzed. Kinematic analysis illustrates that the mechanism contains totally 11 motion branches including three types of effective joints, i.e., non-overconstrained 7R motion branches, overconstrained 6R motion branches, and planar 4R motion branches. Reconfiguration analysis of the mechanism is presented by the kinematic curves, and it shows that there are totally ten bifurcation points. Moreover, the transformations among all the motion branches are analyzed. Then, adopting different combinations of the elements, the evolution design of more 7R multiple metamorphic mechanisms is presented. This paper proposes a family of multiple metamorphic mechanisms which can achieve a large number of motion branches, and the construction process of the mechanisms in this paper provides a new reference for designing multiple metamorphic mechanisms.

References

1.
Dai
,
J. S.
, and
Gogu
,
G.
,
2016
, “
Special Issue on Reconfigurable Mechanisms: Morphing, Metamorphosis and Reconfiguration Through Constraint Variations and Reconfigurable Joints
,”
Mech. Mach. Theory
,
96
, pp.
213
214
.
2.
Nurahmi
,
L.
, and
Gan
,
D.
,
2020
, “
Reconfiguration of a 3-(RR)PS Metamorphic Parallel Mechanism Based on Complete Workspace and Operation Mode Analysis
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011002
.
3.
Fu
,
J.
, and
Gan
,
D.
,
2021
, “
A Reconfigurable Variable-Stiffness Parallel Beam for Compliant Robotic Mechanisms Towards Safe Human Interaction
,”
Proceedings of ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers (ASME)
, p.
V08AT08A020
.
4.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Configuration Transformations in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
Proceedings of 10th World Congress on the Theory of Machine and Mechanisms
,
Oulu, Finland
,
June 20–24
, pp.
542
547
.
5.
Lin
,
Y.-H.
,
Wang
,
T.
,
Spyrakos-Papastavridis
,
E.
,
Fu
,
Z.
,
Xu
,
S.
, and
Dai
,
J. S.
,
2023
, “
Minimum Friction Coefficient-Based Precision Manipulation Workspace Analysis of the Three-Fingered Metamorphic Hand
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
011001
.
6.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
7.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
and
V.
Parenti-Castelli
, eds.,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
359
368
.
8.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2005
, “
Discontinuously Movable Seven-Link Mechanisms Via Group-Algebraic Approach
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
219
(
6
), pp.
577
587
.
9.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2016
, “
Various Types of (RC)Under-Bar//(RC)Double-Under-Bar-Like Linkages and the Discontinuously Movable Koenigs Joint
,”
Mech. Mach. Theory
,
96
, pp.
255
268
.
10.
Yan
,
H. S.
, and
Liu
,
N. T.
,
2003
, “
Joint-Codes Representations for Mechanisms and Chains With Variable Topologies
,”
Trans. Can. Soc. Mech. Eng.
,
27
(
1–2
), pp.
131
143
.
11.
Kong
,
X. W.
,
Gosselin
,
C. M.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
12.
Kong
,
X. W.
, and
Jin
,
Y.
,
2016
, “
Type Synthesis of 3-DOF Multi-mode Translational/Spherical Parallel Mechanisms With Lockable Joints
,”
Mech. Mach. Theory
,
96
, pp.
323
333
.
13.
Gao
,
X.
,
Li
,
F.
,
Han
,
X.
,
Liu
,
X.
, and
Li
,
S.
,
2023
, “
Configuration Synthesis Method of Multi-mode Parallel Mechanism Based on Variable Mobility Branch
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061003
.
14.
Kong
,
X. W.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
15.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J. S.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
, pp.
215
224
.
16.
You
,
J. J.
,
Xi
,
F. F.
,
Shen
,
H. P.
,
Wang
,
J. Y.
, and
Yang
,
X. L.
,
2021
, “
A Novel Stewart-Type Parallel Mechanism With Topological Reconfiguration: Design, Kinematics and Stiffness Evaluation
,”
Mech. Mach. Theory
,
162
, p.
104329
.
17.
Thiruvengadam
,
S.
,
Tan
,
J. S.
, and
Miller
,
K.
,
2021
, “
A Generalised Quaternion and Clifford Algebra Based Mathematical Methodology to Effect Multi-stage Reassembling Transformations in Parallel Robots
,”
Adv. Appl. Clifford Algebras
,
31
(
3
), p.
39
.
18.
Thiruvengadam
,
S.
,
Tan
,
J. S.
, and
Miller
,
K.
,
2021
, “
Reassembling Transformations for Robot Manipulators Characterised Using Network Theoretic and Clifford-Algebraic Methods
,”
Robotica
,
39
(
5
), pp.
816
841
.
19.
Teng
,
X.
,
Li
,
Y.
,
Liu
,
Y.
, and
Yao
,
Y.-A.
,
2024
, “
Design and Reconfiguration Analysis of the Trunk Mechanism for a Reconfigurable Wheeled Mobile Platform
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
054505
.
20.
Müller
,
A.
, and
Li
,
Z.
,
2024
, “
Identification of Real and Complex Solution Varieties and Their Singularities Defined by Loop Constraints of Linkages Using the Kinematic Tangent Cone
,”
ASME J. Mech. Rob.
,
16
(
11
), p.
111003
.
21.
Feng
,
H.
,
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6R Linkages
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051003
.
22.
Wang
,
C.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2023
, “
A Kirigami-Inspired Metamorphic Double-Loop Linkage With Multiple Single-Degree-of-Freedom Reconfiguration Branches
,”
ASME J. Mech. Des.
,
145
(
7
), p.
073301
.
23.
Jin
,
L.
,
Forte
,
A. E.
,
Deng
,
B.
,
Rafsanjani
,
A.
, and
Bertoldi
,
K.
,
2020
, “
Kirigami-Inspired Inflatables With Programmable Shapes
,”
Adv. Mater.
,
32
(
33
), p.
2001863
.
24.
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
25.
Ma
,
X. S.
,
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
26.
Wang
,
R. Q.
,
Song
,
Y. Q.
, and
Dai
,
J. S.
,
2021
, “
Reconfigurability of the Origami-Inspired Integrated 8R Kinematotropic Metamorphic Mechanism and Its Evolved 6R and 4R Mechanisms
,”
Mech. Mach. Theory
,
161
, p.
104245
.
27.
Feng
,
H. J.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
28.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
29.
Waldron
,
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
30.
Chai
,
X. H.
,
Kang
,
X.
,
Gan
,
D. M.
,
Yu
,
H. Y.
, and
Dai
,
J. S.
,
2021
, “
Six Novel 6R Metamorphic Mechanisms Induced From Three-Series-Connected Bennett Linkages That Vary Among Classical Linkages
,”
Mech. Mach. Theory
,
156
, p.
104133
.
31.
Chai
,
X. H.
, and
Dai
,
J. S.
,
2019
, “
Three Novel Symmetric Waldron-Bricard Metamorphic and Reconfigurable Mechanisms and Their Isomerization
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051011
.
32.
Gao
,
Y.
,
Yang
,
F.
, and
Zhang
,
J.
,
2022
, “
A Reconfigurable 6R Linkage with Six Motion Modes and Three Topological Structures
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
054503
.
33.
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
.
34.
He
,
X. Y.
,
Kong
,
X. W.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G. B.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
35.
Song
,
Y. Q.
,
Ma
,
X. S.
, and
Dai
,
J. S.
,
2019
, “
A Novel 6R Metamorphic Mechanism With Eight Motion Branches and Multiple Furcation Points
,”
Mech. Mach. Theory
,
142
, p.
103598
.
36.
Kang
,
X.
,
Feng
,
H. J.
,
Dai
,
J. S.
, and
Yu
,
H. Y.
,
2020
, “
High-Order Based Revelation of Bifurcation of Novel Schatz-Inspired Metamorphic Mechanisms Using Screw Theory
,”
Mech. Mach. Theory
,
152
, p.
103931
.
37.
Kang
,
X.
,
Ma
,
X. S.
,
Dai
,
J. S.
, and
Yu
,
H. Y.
,
2020
, “
Bifurcation Variations and Motion-Ruled-Surface Evolution of a Novel Schatz Linkage Induced Metamorphic Mechanism
,”
Mech. Mach. Theory
,
150
, p.
103867
.
38.
Denavit
,
J.
, and
Hartenberg
,
R.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
39.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
40.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
41.
Bricard
,
R.
,
1927
,
Leçons de Cinématique, Tome II Cinématique Appliquée
,
Gauthier-Villars
,
Paris, France
.
42.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.
43.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
220
(
7
), pp.
1045
1056
.
You do not currently have access to this content.