Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the realm of cable-driven parallel robots (CDPRs), the conventional notion entails that each cable is directly actuated by a corresponding actuator, implying a direct relationship between the number of cables and actuators. However, this article introduces a paradigm shift by contending that the number of cables should be contingent upon the desired workspace, while the number of actuators should align with the robot’s degrees-of-freedom (DoF). This novel perspective leads to an unconventional design methodology for CDPRs. Instead of commencing with the number of actuators and cables in mind, we propose an approach that begins with defining the required workspace shape and determines the requisite number of cables. Subsequently, an actuation scheme is established where each actuator can drive multiple cables. This process entails the formulation of a transmission matrix that captures the interplay between actuators and cables, followed by the mechanical implementation of the corresponding cable-pulley routing. To illustrate this approach, we provide an example involving a 2-DoF CDPR aimed at covering a rectangular workspace. Notably, the resulting wrench-closure workspace (WCW) and wench-feasible workspace (WFW) of the proposed designs exhibit favorable comparisons to existing CDPRs with more actuators.

References

1.
Bruckmann
,
T.
, and
Pott
,
A.
,
2012
,
Cable-Driven Parallel Robots
, Vol.
12
,
Springer
,
Berlin, Heidelberg
.
2.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
3.
Yang
,
G.
,
Pham
,
C. B.
, and
Yeo
,
S. H.
,
2006
, “
Workspace Performance Optimization of Fully Restrained Cable-Driven Parallel Manipulators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
85
90
.
4.
Khodadadi
,
N.
,
Hosseini
,
M. I.
,
Khalilpour
,
S.
,
Taghirad
,
H.
, and
Cardou
,
P.
,
2021
, “
Kinematic Analysis of Planar Cable-Driven Robots With Parallelogram Links
,”
CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium
,
Oshawa, Ontario, Canada
,
June 3–4
.
5.
Mersi
,
R.
,
Vali
,
S.
, and
Masouleh
,
M. T.
,
2018
, “
Design and Control of a Suspended Cable-Driven Parallel Robot With Four Cables
,”
6th RSI International Conference on Robotics and Mechatronics (IcRoM)
,
Tehran, Iran
,
Oct. 23–25
, pp.
470
475
.
6.
Mersi
,
R.
,
Archambault
,
L.
,
Therriault-Proulx
,
F.
, and
Cardou
,
P.
,
2023
, “
5-DOF Cable Driven Parallel Robot for the Calibration of Radiotherapy Machines
,”
CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium
,
Québec City, Québec, Canada
,
June 19–20
.
7.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.
8.
Song
,
D.
,
Zhang
,
L.
, and
Xue
,
F.
,
2018
, “
Configuration Optimization and a Tension Distribution Algorithm for Cable-Driven Parallel Robots
,”
IEEE Access
,
6
, pp.
33928
33940
.
9.
Bergerman
,
M.
, and
Xu
,
Y.
,
1996
, “
Robust Joint and Cartesian Control of Underactuated Manipulators
,”
J. Dyn. Syst. Meas. Control.
,
118
(
3
), pp.
557
565
.
10.
Moran
,
A.
,
Odagaki
,
H.
, and
Hayase
,
M.
,
1997
, “
Dynamics and Control of Underactuated Brachiation Robots
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Tokyo, Japan
,
June 20
, p.
98
.
11.
Lee
,
K.
,
1998
, “
Swing-Up and Balancing Control of Underactuated Robotic Systems
,” Ph.D. thesis, University of Illinois, Urbana-Champaign.
12.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
,
Underactuated Robotic Hands
, Vol.
40
,
Springer
,
Berlin/Heidelberg
.
13.
Laliberte
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Rob. Control
,
4
(
3
), pp.
1
11
.
14.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2004
, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.
15.
Mustafa
,
S. K.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Lin
,
W.
,
2008
, “
Kinematic Calibration of a 7-DOF Self-Calibrated Modular Cable-Driven Robotic ARM
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1288
1293
.
16.
Birglen
,
L.
, and
Gosselin
,
C.
,
2003
, “
On the Force Capability of Underactuated Fingers
,”
IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 1, pp.
1139
1145
.
17.
Birglen
,
L.
, and
Gosselin
,
C.
,
2004
, “
Kinetostatic Analysis of Underactuated Fingers
,”
IEEE. Trans. Rob. Autom.
,
20
(
2
), pp.
211
221
.
18.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Optimally Unstable Underactuated Gripper: Synthesis and Applications
,”
30th Annual Mechanisms and Robotics Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
3
11
.
19.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2005
, “
Geometric Design of Three-Phalanx Underactuated Fingers
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
356
364
.
20.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Force Analysis of Connected Differential Mechanisms: Application to Grasping
,”
Int. J. Rob. Res.
,
25
(
10
), pp.
1033
1046
.
21.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
22.
Schempf
,
H.
,
1990
, “
Comparative Design, Modeling, and Control Analysis of Robotic Transmissions
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
23.
Kevac
,
L. B.
, and
Filipovic
,
M. M.
,
2022
, “
Development of Cable-Suspended Parallel Robot, CPR System, and Its Sub-systems
,”
Zbornik Radova
,
1
, pp.
318
354
.
24.
Étienne
,
L.
,
Cardou
,
P.
,
Métillon
,
M.
, and
Caro
,
S.
,
2022
, “
Design of a Planar Cable-Driven Parallel Crane Without Parasitic Tilt
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041006
.
25.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
,
T.
,
2012
, “
Conceptual Design and Static Analysis of Novel Planar Spring-loaded Cable-Loop-Driven Parallel Mechanisms’
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021001
.
26.
Khakpour
,
H.
, and
Birglen
,
L.
,
2014
, “
Workspace Augmentation of Spatial 3-DOF Cable Parallel Robots Using Differential Actuation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, IEEE, pp.
3880
3885
.
27.
Khakpour
,
H.
,
Birglen
,
L.
, and
Tahan
,
S.-A.
,
2014
, “
Synthesis of Differentially Driven Planar Cable Parallel Manipulators
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
619
630
.
28.
Behroozi
,
F.
,
Cardou
,
P.
, and
Caro
,
S.
,
2023
, “Transmission Systems to Extend the Workspace of Planar Cable-Driven Parallel Robots,”
Cable-Driven Parallel Robots
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer Nature
,
Switzerland
, pp.
308
320
.
29.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2004
, “
On the Properties and the Determination of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, Vol. 46954, pp.
337
346
.
30.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
.
31.
Roberts
,
R. G.
,
Graham
,
T.
, and
Lippitt
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Rob. Syst.
,
15
(
10
), pp.
581
597
.
32.
Meyer
,
C. D.
,
2001
,
Solutions Manual: Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
33.
Gouttefarde
,
M.
,
Merlet
,
J.-P.
, and
Daney
,
D.
,
2007
, “
Wrench-Feasible Workspace of Parallel Cable-Driven Mechanisms
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
1492
1497
.
You do not currently have access to this content.