Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Scholars have proposed to allow cables to wrap on the base, the end-effector, or obstacles to expand the workspace of a cable-driven parallel robot (CDPR) in recent years. However, it is not entirely clear whether the path of a cable wrapped on the surface of different rigid bodies can or cannot be solved analytically. To this end, this paper analyzes the statics of a cable wrapped on a general surface and proposes necessary conditions for a path of a cable wrapped on a general frictionless surface. This paper shows that only the path of a cable wrapped on a frictionless surface included in a handful of surfaces, including cylinders and spheres, can be solved analytically. Then, the cable path and inverse velocity kinematics of a CDPR with cables, every of which wraps on a frictionless cylinder or a frictionless sphere, are solved. A CDPR demonstrator with cables wrapped on cylinders fixed to the base and a CDPR demonstrator with cables wrapped on a spherical end-effector are established. The kinematics-based control of the CDPR demonstrators is achieved.

References

1.
Anson
,
M.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2017
, “
Orientation Workspace and Stiffness Optimization of Cable-Driven Parallel Manipulators With Base Mobility
,”
ASME J. Mech. Rob.
,
9
(
3
), p. 031011.
2.
Xiong
,
H.
,
Cao
,
H.
,
Zeng
,
W.
,
Huang
,
J.
,
Diao
,
X.
,
Lu
,
W.
, and
Lou
,
Y.
,
2022
, “
Real-Time Reconfiguration Planning for the Dynamic Control of Reconfigurable Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060913
.
3.
Gao
,
J.
,
Zhou
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhao
,
P.
,
2022
, “
Kinematic Uncertainty Analysis of a Cable-Driven Parallel Robot Based on an Error Transfer Model
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051008
.
4.
Lau
,
D.
,
Eden
,
J.
,
Tan
,
Y.
, and
Oetomo
,
D.
,
2016
, “
CASPR: A Comprehensive Cable-Robot Analysis and Simulation Platform for the Research of Cable-Driven Parallel Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
3004
3011
.
5.
McDonald
,
E.
,
Arsenault
,
M.
, and
Beites
,
S.
,
2023
, “
Design of a 3-Degrees-of-Freedom Cable-Driven Parallel Robot for Automated Construction Based on Workspace and Kinematic Sensitivity
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
021006
.
6.
Zhou
,
B.
,
Wang
,
Y.
,
Zi
,
B.
, and
Zhu
,
W.
,
2023
, “
Fuzzy Adaptive Whale Optimization Control Algorithm for Trajectory Tracking of a Cable-Driven Parallel Robot
,”
IEEE Trans. Auto. Sci. Eng.
, pp.
1
12
.
7.
Blanchet
,
L.
, and
Merlet
,
J.
,
2014
, “
Interference Detection for Cable-Driven Parallel Robots (CDPRs)
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Besançon, France
,
July 8–11
, pp.
1413
1418
.
8.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2022
, “
Design of Spatial Adaptive Cable-Driven Parallel Robots With an Unlimited Rotation Axis Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
171
(
8
), p.
104720
.
9.
Lei
,
M. C.
,
2020
, “
Dynamics of Cable Driven Parallel Manipulator Allowing Cable Wrapping Over Rigid Link
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–9
, pp.
215
221
.
10.
Mao
,
Y.
,
Jin
,
X.
,
Dutta
,
G. G.
,
Scholz
,
J. P.
, and
Agrawal
,
S. K.
,
2015
, “
Human Movement Training With a Cable Driven Arm Exoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
.
11.
Martin
,
A.
,
Caro
,
S.
, and
Cardou
,
P.
,
2018
, “
Geometric Determination of the Cable-Cylinder Interference Regions in the Workspace of a Cable-Driven Parallel Robot
,” In
Mechanisms and Machine Science
, Vol.
53
,
Springer
Netherlands
, pp.
117
127
.
12.
Lessanibahri
,
S.
,
Cardou
,
P.
, and
Caro
,
S.
,
2020
, “
A Cable-Driven Parallel Robot With an Embedded Tilt-Roll Wrist
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021107
.
13.
Métillon
,
M.
,
Cardou
,
P.
,
Subrin
,
K.
,
Charron
,
C.
, and
Caro
,
S.
,
2021
, “
A Cable-Driven Parallel Robot With Full-Circle End-Effector Rotations
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031017
.
14.
Lei
,
M. C.
, and
Oetomo
,
D.
,
2013
, “
Modelling of Cable Wrapping Phenomenon Towards Improved Cable-Driven Mechanisms
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Wollongong, Australia
,
July 9–12
, IEEE, pp.
649
655
.
15.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2021
, “
Design and Optimization of Three-Degree-of-Freedom Planar Adaptive Cable-Driven Parallel Robots Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
166
(
6
), p.
104475
.
16.
Rushton
,
M.
, and
Khajepour
,
A.
,
2021
, “
Planar Variable Structure Cable-Driven Parallel Robots for Circumventing Obstacles
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021011
.
17.
Rushton
,
M.
, and
Khajepour
,
A.
,
2023
, “
An Atlas-Based Approach to Planar Variable-Structure Cable-Driven Parallel Robot Configuration-Space Representation
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1594
1606
.
18.
Jin
,
L.
,
Taha
,
T.
, and
Gan
,
D.
,
2023
, “
Kinetostatic Modeling and Configuration Variation Analysis of Cable-Driven Parallel Robots on Spherical Surfaces
,” In
Cable-Driven Parallel Robots
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer Nature Switzerland
, pp.
40
51
.
19.
Hu
,
Y.
,
Zou
,
Y.
,
Cao
,
H.
,
Lu
,
W.
, and
Xiong
,
H.
,
2022
, “
Modeling and Control of a Cable-Driven Parallel Robot Allowing Cable-edge Collisions
,”
IEEE International Conference on Advanced Robotics and Mechatronics
,
Guilin, China
,
July 9–11
, IEEE, pp.
483
487
.
20.
Xiong
,
H.
, and
Xu
,
Y.
,
2023
, “
Statics and Path of the Cables of a Cable-Driven Parallel Robot Wrapping on Surfaces
,”
Cable-Driven Parallel Robots
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer Nature Switzerland
, pp.
82
94
.
21.
Idá
,
E.
,
Merlet
,
J. P.
, and
Carricato
,
M.
,
2019
,
Automatic Self-Calibration of Suspended Under-Actuated Cable-Driven Parallel Robot Using Incremental Measurements
, Vol.
74
,
Springer International Publishing
,
Cham, Switzerland
.
22.
Pressley
,
A. N.
,
2010
,
Elementary Differential Geometry
,
Springer Science & Business Media
,
London, UK
.
23.
Fu
,
J.
,
Yun
,
J.
, and
Jung
,
Y.
,
2017
, “
Filament Winding Path Generation Based on the Inverse Process of Stability Analysis for Non-Axisymmetric Mandrels
,”
J. Compos. Mater.
,
51
(
21
), pp.
2989
3002
.
24.
Marsden
,
S. P.
,
Swailes
,
D. C.
, and
Johnson
,
G. R.
,
2008
, “
Algorithms for Exact Multi-object Muscle Wrapping and Application to the Deltoid Muscle Wrapping Around the Humerus
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
7
), pp.
1081
1095
.
25.
Lloyd
,
J. E.
,
Roewer-Despres
,
F.
, and
Stavness
,
I.
,
2021
, “
Muscle Path Wrapping on Arbitrary Surfaces
,”
IEEE Trans. Biomed. Eng.
,
68
(
2
), pp.
628
638
.
26.
Scholz
,
A.
,
Sherman
,
M.
,
Stavness
,
I.
,
Delp
,
S.
, and
Kecskeméthy
,
A.
,
2016
, “
A Fast Multi-obstacle Muscle Wrapping Method Using Natural Geodesic Variations
,”
Multi. Syst. Dyn.
,
36
(
2
), pp.
195
219
.
27.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Vibration Analysis of Cable-Driven Parallel Manipulators
,”
Multi. Syst. Dyn.
,
21
(
4
), pp.
347
360
.
28.
Boumann
,
R.
, and
Bruckmann
,
T.
,
2021
, “
An Emergency Strategy for Cable Failure in Reconfigurable Cable Robots
,” In
Cable-Driven Parallel Robots
,
M.
Gouttefarde
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer International Publishing
, pp.
217
229
.
29.
Pott
,
A.
, and
Kraus
,
W.
,
2016
, “
Determination of the Wrench-Closure Translational Workspace in Closed-Form for Cable-Driven Parallel Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
882
887
.
30.
Briot
,
S.
, and
Khalil
,
W.
,
2015
, “
Homogeneous Transformation Matrix
,”
Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements
,
S.
Briot
and
W.
Khalil
, eds.
Springer International Publishing
, Cham, pp.
19
32
.
31.
Audenaert
,
A.
, and
Audenaert
,
E.
,
2008
, “
Global Optimization Method for Combined Spherical-Cylindrical Wrapping in Musculoskeletal Upper Limb Modelling
,”
Comput. Methods Programs Biomed.
,
92
(
1
), pp.
8
19
.
32.
Zou
,
Y.
,
Hu
,
Y.
,
Cao
,
H.
,
Xu
,
Y.
,
Yu
,
Y.
,
Lu
,
W.
, and
Xiong
,
H.
,
2022
, “
Data-Driven Kinematic Control Scheme for Cable-Driven Parallel Robots Allowing Collisions
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, IEEE, pp.
5003
5008
.
You do not currently have access to this content.