Abstract

Rigidly foldable origami tubes are widely used in origami-inspired engineering designs. Here, using a mechanism construction process, we show that these tubes can be combined with tapered adding parts to form new tubes with different-sized cross sections that are rigidly foldable. A tapered tube is proposed, whose geometries are provided based on the kinematics of spherical 4R linkages. Several variations of the tapered tubes are presented, and the flat-foldability of these tubes is studied, leading to the right-angled and non-right-angled tubes which can be folded along their radial direction. The approach can be applied to both single and multilayered tubes. Moreover, the thick-panel form of the right-angled tubes is developed. Our work provides designers great flexibility in the design of tubular structures that require large shape changes. The results can be readily utilized to build new structures for engineering applications ranging from deployable structures, meta-materials to origami robots.

References

1.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami
,
5
, pp.
291
304
.
2.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
American Society of Mechanical Engineers
, pp.
V001T01A027
V001T01A027
.
3.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Pre-Folded Origami Pattern Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
4.
Martinez-Martin
,
F. J.
, and
Thrall
,
A. P.
,
2014
, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency
,”
Eng. Struct.
,
69
, pp.
158
167
.
5.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
R. J.
, Jr.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.
6.
De Temmerman
,
N.
,
Mollaert
,
M.
,
Van Mele
,
T.
, and
De Laet
,
L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.
7.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
Zhong
,
Y.
,
Tomus
,
D.
,
Umemoto
,
M.
, and
Ito
,
T.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
8.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
9.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders—Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
10.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J. Ser. C
,
45
(
1
), pp.
364
370
.
11.
Nojima
,
T.
,
2002
, “
Origami Modeling of Functional Structures Based on Organic Patterns
,”
Master’s thesis
,
Graduate School of Kyoto University
,
Kyoto, Japan
.
12.
Connelly
,
R.
,
Sabitov
,
I.
, and
Walz
,
A.
,
1997
, “
The Bellows Conjuncture
,”
Beitr. Algebra Geom.
,
38
(
1
), pp.
1
10
.
13.
Tachi
,
T.
,
2010
, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
,
Spain
,
Sept. 28–Oct. 2
,
Universidad Politecnica de Valencia
, pp.
2295
2305
.
14.
Tachi
,
T.
,
2016
, “
Designing Rigidly Foldable Horns Using Bricard's Octahedron
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031008
.
15.
Liu
,
S.
,
Lv
,
W.
,
Chen
,
Y.
, and
Lu
,
G.
,
2014
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031002
.
16.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedral
,”
Eighth Congress and Exhibition of the International Society for the Interdisciplinary Study of Symmetry
,
Gmund, Austria
,
Aug. 23–28
, pp.
204
213
.
17.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi–Miura Polyhedron Bellows
,”
Proc. R. Soc. A.
,
469
(
2159
), p.
20130351
.
18.
Yamaguchi
,
K.
,
Yasuda
,
H.
,
Tsujikawa
,
K.
,
Kunimine
,
T.
, and
Yang
,
J.
,
2022
, “
Graph-Theoretic Estimation of Reconfigurability in Origami-Based Metamaterials
,”
Mater. Des.
,
213
, p.
110343
.
19.
Deleo
,
A. A.
,
O'Neil
,
J.
,
Yasuda
,
H.
,
Salviato
,
M.
, and
Yang
,
J.
,
2020
, “
Origami-Based Deployable Structures Made of Carbon Fiber Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
191
, p.
108060
.
20.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3276
3281
.
21.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.
22.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150607
.
23.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
You do not currently have access to this content.