Abstract

A tripod-scissor unit, unlike planar scissor pairs, consists of three rods connected at an intermediate joint thus forming a spatially transformable unit. Geometrically, a tripod-scissor unit is axisymmetric but does not possess reflectional symmetry. This paper proposes a mirrored assembly approach wherein two units are connected symmetrically about the mirroring plane. The assembly approach results in different geometric conditions and motion characteristics. Two types of four-unit deployable blocks were made—one out of straight and the other of angulated members. Design equations were developed to study the influence of member geometry and assembly method on the structure’s form and transformation. Digital models helped to validate the analytical results and to simulate the motion of the structures. More sample structures are presented to demonstrate the assembly of multiple units using the mirrored approach. The analysis shows that the mirrored assembly tripod-scissors result in a new generation of mechanisms with different transformation characteristics. Closed polyhedral forms with a high expansion ratio are possible.

References

1.
Pellegrino
,
S.
,
2001
,
Deployable Structures in Engineering
,
International Centre for Mechanical Sciences, vol. 412, Springer
,
Vienna
.
2.
De Temmerman
,
N.
,
2007
, “Design and Analysis of Deployable Bar Structures for Mobile Architectural Applications,”
Ph.D. thesis
,
Vrije Universiteit Brussel
,
Brussels, Belgium
.
3.
Zhou
,
Y.
,
Zhang
,
Q.
,
Jia
,
W.
,
Lee
,
D. S.-h.
,
Cai
,
J.
, and
Feng
,
J.
,
2022
, “
Mechanical Behavior of Elastic Telescopic Rods for Morphing Scissor Structures
,”
J. Build. Eng.
,
56
, p.
104734
.
4.
Perez
,
P. E.
,
1965
, “Three Dimensional Reticular Structure,” US Patent 3,185,164.
5.
Pérez Belda
,
E. A.
, and
Pérez Almagro
,
M. C.
,
2016
, “
La Arquitectura Desplegable Conmemora Los Xxv años De Paz. 50 Aniversario Del Pabellón De Emilio Pérez Piñero
,”
EGA. Revista de expresión gráfica arquitectónica
,
21
(
28
), pp.
146
155
.
6.
Zeigler
,
T. R.
,
1976
, “Collapsible Self-Supporting Structure,” US Patent 3,968,808.
7.
Escrig
,
F.
,
1985
, “
Expandable Space Structures
,”
Int. J. Sp. Struct.
,
1
(
2
), pp.
79
91
.
8.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Sp. Struct.
,
8
(
1–2
), pp.
71
84
.
9.
Escrig
,
F.
,
Sanchez
,
J.
, and
Valcarcel
,
J. P.
,
1996
, “
Two Way Deployable Spherical Grids
,”
Int. J. Sp. Struct.
,
11
(
1–2
), pp.
257
274
.
10.
Gantes
,
C.
,
Logcher
,
R.
,
Connor
,
J.
, and
Rosenfeld
,
Y.
,
1993
, “
Geometric Design of Deploybale Structures With Discrete Joint Size
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
107
117
.
11.
Gantes
,
C. J.
, and
Konitopoulou
,
E.
,
2004
, “
Geometric Design of Arbitrarily Curved Bi-Stable Deployable Arches With Discrete Joint Size
,”
Int. J. Solids Struct.
,
41
(
20
), pp.
5517
5540
.
12.
Hoberman
,
C.
,
1990
, “Reversibly Expandable Doubly-Curved Truss Structure,” US Patent 4,942,700.
13.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.
14.
Maden
,
F.
,
Akgün
,
Y.
,
Kiper
,
G.
,
Gür
,
Ş.
,
Yar
,
M.
, and
Korkmaz
,
K.
,
2019
, “
A Critical Review on Classification and Terminology of Scissor Structures
,”
J. Int. Assoc. Shell Spat. Struct.
,
60
(
1
), pp.
47
64
.
15.
Moy
,
J. J.
,
Tan
,
C. S.
,
Mohammad
,
S.
, and
Abidin
,
A. R. Z.
,
2022
, “
State-of-Art Review on Deployable Scissor Structure in Construction
,”
Structures
,
42
, pp.
160
180
.
16.
Roovers
,
K.
, and
De Temmerman
,
N.
,
2017
, “
Deployable Scissor Grids Consisting of Translational Units
,”
Int. J. Solids Struct.
,
121
, pp.
45
61
.
17.
Liao
,
Y.
,
2021
, “Geometric Design of Deployable Antenna Frame Using Hyperboloid Scissor Structure,”
Earth and Space 2021
,
P. J.
van Susante
, and
A. D.
Roberts
, eds., pp.
1047
1058
.
18.
Li
,
B.
,
Duan
,
C.
,
Peng
,
Q.
,
Wang
,
S.
, and
Tan
,
U.-X.
,
2021
, “
Parametric Study of Planar Flexible Deployable Structures Consisting of Scissor-Like Elements Using a Novel Multibody Dynamic Analysis Methodology
,”
Arch. Appl. Mech.
,
91
(
11
), pp.
4517
4537
.
19.
García-Mora
,
C. J.
, and
Sánchez-Sánchez
,
J.
,
2022
, “
Geometric Strategies to Design a Bistable Deployable Structure With Straight Scissors Using Stiff and Flexible Rods
,”
Int. J. Solids Struct.
,
238
, p.
111381
.
20.
Tsuda
,
S.
,
Kohno
,
J.
,
Nakahara
,
Y.
, and
Ohsaki
,
M.
,
2022
, “
Composition of Curvilinearly Extendable Tubular Scissor Mechanisms
,”
Int. J. Solids Struct.
,
250
, p.
111673
.
21.
Arnouts
,
L. I.
,
De Temmerman
,
N.
,
Massart
,
T. J.
, and
Berke
,
P.
,
2020
, “
Geometric Design of Triangulated Bistable Scissor Structures Taking Into Account Finite Hub Size
,”
Int. J. Solids Struct.
,
206
, pp.
84
100
.
22.
García-Mora
,
C. J.
, and
Sánchez-Sánchez
,
J.
,
2020
, “
Geometric Method to Design Bistable and Non-Bistable Deployable Structures of Straight Scissors Based on the Convergence Surface
,”
Mech. Mach. Theory
,
146
, p.
103720
.
23.
Santana
,
M.
,
Hjiaj
,
M.
, and
Berke
,
P.
,
2022
, “
Modal Analysis of a Bistable Deployable Module With a Refined Joint Model
,”
Eng. Struct.
,
269
, p.
114798
.
24.
Kİper
,
G.
,
Korkmaz
,
K.
,
Gür
,
Ş.
,
Yar Uncu
,
M.
,
Maden
,
F.
,
Akgün
,
Y.
, and
Karagöz
,
C.
,
2022
, “
Loop Based Classification of Planar Scissor Linkages
,”
Sādhanā
,
47
(
1
), p.
12
.
25.
Sarısayın
,
N. H.
,
Akgün
,
Y.
,
Maden
,
F.
, and
Kilit
,
Ö.
,
2022
, “
Geometric Design of Planar Scissor Linkages With Hybrid Loop Assemblies
,”
J. Archit. Eng.
,
28
(
2
), p.
04022012
.
26.
Krishnan
,
S.
, and
Liao
,
Y.
,
2020
, “
Geometric Design of Deployable Spatial Structures Made of Three-Dimensional Angulated Members
,”
J. Archit. Eng.
,
26
(
3
), p.
04020029
.
27.
Yang
,
T.
,
Li
,
P.
,
Shen
,
Y.
, and
Liu
,
Y.
,
2021
, “
Deployable Scissor Mechanisms Derived From Non-Crossing Angulated Structural Elements
,”
Mech. Mach. Theory
,
165
, p.
104434
.
28.
Krishnan
,
S.
, and
Li
,
Y.
,
2019
, “
Geometric Design of Axisymmetric Spatial Structures Using Planar Angulated Members
,”
J. Archit. Eng.
,
25
(
2
), p.
04019007
.
29.
Dinevari
,
N. F.
,
Shahbazi
,
Y.
, and
Maden
,
F.
,
2021
, “
Geometric and Analytical Design of Angulated Scissor Structures
,”
Mech. Mach. Theory
,
164
, p.
104402
.
30.
Chen
,
Y.
,
Fan
,
L.
, and
Feng
,
J.
,
2017
, “
Kinematic of Symmetric Deployable Scissor-Hinge Structures With Integral Mechanism Mode
,”
Comput. Struct.
,
191
, pp.
140
152
.
31.
Zhang
,
Y.
,
Qian
,
Z.
,
Huang
,
H.
,
Yang
,
X.
, and
Li
,
B.
,
2022
, “
A Snake-Inspired Swallowing Robot Based on Hoberman’s Linkages
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060905
.
32.
Akgün
,
Y.
,
Gantes
,
C. J.
,
Kalochairetis
,
K. E.
, and
Kiper
,
G.
,
2010
, “
A Novel Concept of Convertible Roofs With High Transformability Consisting of Planar Scissor-Hinge Structures
,”
Eng. Struct.
,
32
(
9
), pp.
2873
2883
.
33.
Akgün
,
Y.
,
Gantes
,
C. J.
,
Sobek
,
W.
,
Korkmaz
,
K.
, and
Kalochairetis
,
K.
,
2011
, “
A Novel Adaptive Spatial Scissor-Hinge Structural Mechanism for Convertible Roofs
,”
Eng. Struct.
,
33
(
4
), pp.
1365
1376
.
34.
Ramos-Jaime
,
C.
, and
Sánchez-Sánchez
,
J.
,
2020
, “
Hyperboloid Modules for Deployable Structures
,”
Nexus Netw. J.
,
22
, pp.
309
328
.
35.
Pérez-Valcárcel
,
J.
,
Suárez-Riestra
,
F.
,
Muñoz-Vidal
,
M.
,
López-César
,
I.
, and
Freire-Tellado
,
M.
,
2020
, “
A New Reciprocal Linkage for Expandable Emergency Structures
,”
Structures
,
28
, pp.
2023
2033
.
36.
Pérez-Valcárcel
,
J.
,
Muñoz-Vidal
,
M.
,
Suárez-Riestra
,
F.
,
López-César
,
I. R.
, and
Freire-Tellado
,
M.
,
2021
, “
Deployable Bundle Modulus Structures With Reciprocal Linkages for Emergency Buildings
,”
Eng. Struct.
,
244
, p.
112803
.
37.
Pérez-Valcárcel
,
J.
,
Muñoz-Vidal
,
M.
,
Suárez-Riestra
,
F.
,
López-César
,
I. R.
, and
Freire-Tellado
,
M.
,
2021
, “
Deployable Cylindrical Vaults With Reciprocal Linkages for Emergency Buildings
,”
Structures
,
33
, pp.
4461
4474
.
38.
Liao
,
Y.
, and
Krishnan
,
S.
,
2022
, “
Geometric Design and Kinematics of Spatial Deployable Structures Using Tripod-Scissor Units
,”
Structures
,
38
, pp.
323
339
.
39.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
40.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
.
41.
Chen
,
Y.
,
Xu
,
R.
,
Lu
,
C.
,
Liu
,
K.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Multi-stability of the Hexagonal Origami Hypar Based on Group Theory and Symmetry Breaking
,”
Int. J. Mech. Sci.
,
247
, p.
108196
.
42.
Jalali
,
E.
,
Soltanizadeh
,
H.
,
Chen
,
Y.
,
Xie
,
Y. M.
, and
Sareh
,
P.
,
2022
, “
Selective Hinge Removal Strategy for Architecting Hierarchical Auxetic Metamaterials
,”
Commun. Mater.
,
3
(
1
), p.
97
.
43.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
44.
Maden
,
F.
,
Korkmaz
,
K.
, and
Akgün
,
Y.
,
2011
, “
A Review of Planar Scissor Structural Mechanisms: Geometric Principles and Design Methods
,”
Archit. Sci. Rev.
,
54
(
3
), pp.
246
257
.
45.
Liao
,
Y.
,
Kiper
,
G.
, and
Krishnan
,
S.
,
2024
, “
Mobility Analysis of Tripod Scissor Structures Using Screw Theory
,”
Mech. Mach. Theory
,
191
, p.
105468
.
46.
Kiper
,
G.
,
Söylemez
,
E.
, and
Özgür Kişisel
,
A.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
.
47.
Meng
,
Q.
,
Xie
,
F.
,
Tang
,
R.
, and
Liu
,
X.-J.
,
2023
, “
Deployable Polyhedral Mechanisms With Radially Reciprocating Motion Based on Novel Basic Units and an Additive-Then-Subtractive Design Strategy
,”
Mech. Mach. Theory
,
181
, p.
105174
.
You do not currently have access to this content.