Abstract

In this article, a new algorithm for the computation of workspace boundaries of continuum parallel robots (CPRs) is proposed. State-of-the-art techniques are mainly based on time-consuming joint space discretization approaches or task-space discretization algorithms, and only a few approaches are dedicated to the computation of workspace boundaries. The proposed approach for the computation of the workspace boundaries is based on (i) a free-space exploration strategy and (ii) a boundary reconstruction algorithm. The former is exploited to identify an initial workspace boundary location (exterior, interior boundaries, and holes), while the latter is used to reconstruct the complete boundary surface. Moreover, the algorithm is designed to be employed with CPR modeling strategies based on general discretization assumptions, in order to increase its applicability for various scopes. Our method is compared with two state-of-the-art algorithms in four cases studies, to validate the results and to establish its merits and limitations.

References

1.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
2.
Kolachalama
,
S.
, and
Lakshmanan
,
S.
,
2020
, “
Continuum Robots for Manipulation Applications: A Survey
,”
J. Rob.
,
1
, pp.
1
19
.
3.
Bryson
,
C. E.
, and
Rucker
,
D. C.
,
2014
, “
Toward Parallel Continuum Manipulators
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 5
, pp.
778
785
.
4.
Gilbert
,
H. B.
,
Hendrick
,
R. J.
, and
Webster
,
R. J., III
,
2015
, “
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
20
35
.
5.
Zhong
,
Y.
,
Hu
,
L.
, and
Xu
,
Y.
,
2020
, “
Recent Advances in Design and Actuation of Continuum Robots for Medical Applications
,”
Actuators
,
9
(
4
), p.
142
.
6.
Wu
,
G.
, and
Shi
,
G.
,
2019
, “
Experimental Statics Calibration of a Multi-constraint Parallel Continuum Robot
,”
Mech. Mach. Theory.
,
136
, pp.
72
85
.
7.
Coyle
,
S.
,
Majidi
,
C.
,
LeDuc
,
P.
, and
Hsia
,
K. J.
,
2018
, “
Bio-inspired Soft Robotics: Material Selection, Actuation, and Design
,”
Extreme Mechanics Lett.
,
22
, pp.
51
59
.
8.
Rao
,
P.
,
Peyron
,
Q.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
,”
Frontiers Rob. AI
,
7
, p.
223
.
9.
Merlet
,
J.-P.
,
2005
,
Parallel Robots
, Vol.
128
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
10.
Briot
,
S.
, and
Goldsztejn
,
A.
,
2022
, “
Singularity Conditions for Continuum Parallel Robots
,”
IEEE Trans. Rob.
,
38
(
1
), pp.
507
525
.
11.
Till
,
J.
, and
Rucker
,
D. C.
,
2017
, “
Elastic Stability of Cosserat Rods and Parallel Continuum Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
718
733
.
12.
Amehri
,
W.
,
Zheng
,
G.
, and
Kruszewski
,
A.
,
2020
, “
FEM Based Workspace Estimation for Soft Robots: A Forward-Backward Interval Analysis Approach
,”
2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
,
May 15–June 15
, pp.
170
175
.
13.
Trivedi
,
D.
,
Lesutis
,
D.
, and
Rahn
,
C. D.
,
2010
, “
Dexterity and Workspace Analysis of Two Soft Robotic Manipulators
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
,
Montreal, Quebec, Canada
, pp.
1389
1398
.
14.
Burgner-Kahrs
,
J.
,
Gilbert
,
H. B.
,
Granna
,
J.
,
Swaney
,
P. J.
, and
Webster
,
R. J.
,
2014
, “
Workspace Characterization for Concentric Tube Continuum Robots
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
1269
1275
.
15.
Orekhov
,
A. L.
,
Black
,
C. B.
,
Till
,
J.
,
Chung
,
S.
, and
Rucker
,
D. C.
,
2016
, “
Analysis and Validation of a Teleoperated Surgical Parallel Continuum Manipulator
,”
IEEE Rob. Automation Lett.
,
1
(
2
), pp.
828
835
.
16.
Singh
,
I.
,
Singh
,
M.
,
Pathak
,
P. M.
, and
Merzouki
,
R.
,
2017
, “
Optimal Work Space of Parallel Continuum Manipulator Consisting of Compact Bionic Handling Arms
,”
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macao, China
,
Dec. 5–8
, pp.
258
263
.
17.
Nuelle
,
K.
,
Sterneck
,
T.
,
Lilge
,
S.
,
Xiong
,
D.
,
Burgner-Kahrs
,
J.
, and
Ortmaier
,
T.
,
2020
, “
Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5811
5818
.
18.
Altuzarra
,
O.
,
Caballero
,
D.
,
Campa
,
F. J.
, and
Pinto
,
C.
,
2019
, “
Position Analysis in Planar Parallel Continuum Mechanisms
,”
Mech. Mach. Theory.
,
132
, pp.
13
29
.
19.
Mauze
,
B.
,
Dahmouche
,
R.
,
Laurent
,
G. J.
,
Andre
,
A. N.
,
Rougeot
,
P.
,
Sandoz
,
P.
, and
Clevy
,
C.
,
2020
, “
Nanometer Precision With a Planar Parallel Continuum Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
3806
3813
.
20.
Pan
,
H.
,
Chen
,
G.
,
Kang
,
Y.
, and
Wang
,
H.
,
2021
, “
Design and Kinematic Analysis of a Flexible-Link Parallel Mechanism With a Spatially Quasi-Translational End Effector
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011022
.
21.
Lilge
,
S.
,
Nuelle
,
K.
,
Boettcher
,
G.
,
Spindeldreier
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Tendon Actuated Continuous Structures in Planar Parallel Robots: A Kinematic Analysis
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011025
.
22.
Zaccaria
,
F.
,
Ida
,
E.
,
Briot
,
S.
, and
Carricato
,
M.
,
2022
, “
Workspace Computation of Planar Continuum Parallel Robots
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
2700
2707
.
23.
Chablat
,
D.
, and
Wenger
,
P.
,
1998
, “
Working Modes and Aspects in Fully Parallel Manipulators
,”
Proceedings of 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May 20–24
, pp.
1964
1969
.
24.
Wu
,
G.
, and
Shi
,
G.
,
2022
, “
Design, Modeling, and Workspace Analysis of an Extensible Rod-Driven Parallel Continuum Robot
,”
Mech. Mach. Theory.
,
172
, p.
104798
.
25.
Abdel-Malek
,
K.
, and
Yeh
,
H.-J.
,
1997
, “
Analytical Boundary of the Workspace for General 3-DoF Mechanisms
,”
Int. J. Rob. Res.
,
16
(
2
), pp.
198
213
.
26.
Wang
,
Y.
,
Wu
,
Z.
,
Wang
,
L.
,
Feng
,
B.
, and
Xu
,
K.
,
2022
, “
Inverse Kinematics and Dexterous Workspace Formulation for 2-Segment Continuum Robots With Inextensible Segments
,”
IEEE Rob. Autom. Lett.
,
7
(
1
), pp.
510
517
.
27.
Haug
,
E. J.
,
Luh
,
C.M.
,
Adkins
,
F. A.
, and
Wang
,
J.Y.
,
1996
, “
Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
228
234
.
28.
Amehri
,
W.
,
Zheng
,
G.
, and
Kruszewski
,
A.
,
2021
, “
Workspace Boundary Estimation for Soft Manipulators Using a Continuation Approach
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7169
7176
.
29.
Snyman
,
J.
,
Du Plessis
,
L.
, and
Duffy
,
J.
,
2000
, “
An Optimization Approach to the Determination of the Boundaries of Manipulator Workspaces
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
447
456
.
30.
Amehri
,
W.
,
Zheng
,
G.
,
Kruszewski
,
A.
, and
Renda
,
F.
,
2022
, “
Discrete Cosserat Method for Soft Manipulators Workspace Estimation: An Optimization-Based Approach
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011012
.
31.
Amehri
,
W.
,
Zheng
,
G.
, and
Kruszewski
,
A.
,
2022
, “
FEM-Based Exterior Workspace Boundary Estimation for Soft Robots Via Optimization
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
3672
3678
.
32.
Orekhov
,
A. L.
,
Aloi
,
V. A.
, and
Rucker
,
D. C.
,
2017
, “
Modeling Parallel Continuum Robots With General Intermediate Constraints
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
6142
6149
.
33.
Zaccaria
,
F.
,
Briot
,
S.
,
Chikhaoui
,
M. T.
,
Idà
,
E.
, and
Carricato
,
M.
,
2021
, “An Analytical Formulation for the Geometrico-Static Problem of Continuum Planar Parallel Robots,”
ROMANSY 23 – Robot Design, Dynamics and Control CISM. ROMANSY 2020. International Centre for Mechanical Sciences
, Vol.
601
,
G.
,
Venture
,
J.
,
Solis
,
Y.
,
Takeda
, and
A.
,
Konno
, eds.,
Springer International Publishing
,
Cham
, pp.
512
520
.
34.
Antman
,
S.
,
1995
,
Nonlinear Problems of Elasticity
, Vol.
107
,
Springer Verlag
,
New York
.
35.
Ziegler
,
H.
,
2013
,
Principles of Structural Stability
, Vol.
35
,
Birkhäuser
,
Basel, Switzerland
.
36.
Meier
,
C.
,
Popp
,
A.
, and
Wall
,
W. A.
,
2014
, “
An Objective 3D Large Deformation Finite Element Formulation for Geometrically Exact Curved Kirchhoff Rods
,”
Comput. Methods. Appl. Mech. Eng.
,
278
, pp.
445
478
.
37.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.
38.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatronics
,
8
(
2
), pp.
299
307
.
39.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Robot.
,
22
(
1
), pp.
43
55
.
40.
Renda
,
F.
,
Cacucciolo
,
V.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Discrete Cosserat Approach for Soft Robot Dynamics: A New Piece-Wise Constant Strain Model With Torsion and Shears
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
5495
5502
.
41.
Renda
,
F.
,
Boyer
,
F.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2018
, “
Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1518
1533
.
42.
Renda
,
F.
, and
Seneviratne
,
L.
,
2018
, “
A Geometric and Unified Approach for Modeling Soft-Rigid Multi-body Systems With Lumped and Distributed Degrees of Freedom
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–26
, pp.
1567
1574
.
43.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Renda
,
F.
,
2021
, “
Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
847
863
.
44.
Peyron
,
Q.
,
Rabenorosoa
,
K.
,
Andreff
,
N.
, and
Renaud
,
P.
,
2018
,
Advances in Robot Kinematics 2018. ARK 2018. Springer Proceedings in Advanced Robotics
, Vol.
8
,
J.
Lenarcic
, and
V.
Parenti-Castelli
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
100
107
.
45.
Peyron
,
Q.
,
Boehler
,
Q.
,
Rabenorosoa
,
K.
,
Nelson
,
B. J.
,
Renaud
,
P.
, and
Andreff
,
N.
,
2018
, “
Kinematic Analysis of Magnetic Continuum Robots Using Continuation Method and Bifurcation Analysis
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3646
3653
.
46.
Duriez
,
C.
,
2013
, “
Control of Elastic Soft Robots Based on Real-Time Finite Element Method
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3982
3987
.
47.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
51
68
.
48.
Simo
,
J.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods. Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
49.
Sadati
,
S. M. H.
,
Naghibi
,
S. E.
,
Walker
,
I. D.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2018
, “
Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and Ritz–galerkin Methods
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
328
335
.
50.
Schillinger
,
D.
,
Evans
,
J. A.
,
Reali
,
A.
,
Scott
,
M. A.
, and
Hughes
,
T. J.
,
2013
, “
Isogeometric Collocation: Cost Comparison With Galerkin Methods and Extension to Adaptive Hierarchical Nurbs Discretizations
,”
Comput. Methods. Appl. Mech. Eng.
,
267
, pp.
170
232
.
51.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2020
, “
Solving Cosserat Rod Models via Collocation and the Magnus Expansion
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, pp.
8653
8660
.
52.
Briot
,
S.
, and
Boyer
,
F.
,
2022
, “
A Geometrically Exact Assumed Strain Modes Approach for the Geometrico- and Kinemato-Static Modelings of Continuum Parallel Robots
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1527
1543
.
53.
Renda
,
F.
,
Armanini
,
C.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Boyer
,
F.
,
2020
, “
A Geometric Variable-Strain Approach for Static Modeling of Soft Manipulators With Tendon and Fluidic Actuation
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4006
4013
.
54.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Renda
,
F.
,
2022
, “
Extended Hamilton’s Principle Applied to Geometrically Exact Kirchhoff Sliding Rods
,”
J. Sound. Vib.
,
516
, p.
116511
.
55.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer
,
New York
.
56.
Böttcher
,
G.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Design of a Reconfigurable Parallel Continuum Robot With Tendon-Actuated Kinematic Chains
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1272
1279
.
57.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DoF Parallel Manipulators
,”
Mech. Mach. Theory.
,
36
(
1
), pp.
15
28
.
You do not currently have access to this content.