Abstract

Origami inspires various designs of foldable prismatic structures with zero-thickness facets. However, there is a difficulty in directly applying them to thick materials. This paper presents a novel design of the foldable prismatic structure inspired by the zigzag pattern, which can accommodate the thickness of materials easily by placing hinges on the top or bottom surfaces of panels. The foldable prismatic structures are constructed by connecting multiple zigzag strips, in which each strip is made up of uniform-thickness hexagonal panels. By identifying the relationship between the foldable structure and spatial linkages, we analyze the mobility of the assembly based on the matrix method with DH notations. The result reveals that the foldable prismatic structure is equivalent to a network of spherical 4R linkages and Bennett linkages, and its motion has a single-degree-of-freedom. Based on the proposed foldable prismatic structure, a foldable manipulator is developed to demonstrate its potential engineering applications. The actuation strategy is designed by employing a motor-cable-driven system and torsional spring hinges. The physical prototype of the foldable manipulator is fabricated, and experimental results prove that our designs are feasible and effective.

References

1.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
The Institute of Space and Astronautical Science Report
, pp.
1
9
.
2.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
3.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.
4.
Lee
,
D. Y.
,
Kim
,
J. K.
,
Sohn
,
C. Y.
,
Heo
,
J. M.
, and
Cho
,
K. J.
,
2021
, “
High-Load Capacity Origami Transformable Wheel
,”
Sci. Rob.
,
6
(
53
), p.
eabe0201
.
5.
Li
,
S. G.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci.
,
114
(
50
), pp.
13132
13137
.
6.
Lee
,
T. U.
, and
Gattas
,
J. M.
,
2016
, “
Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031009
.
7.
Melancon
,
D.
,
Gorissen
,
B.
,
Garcia-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
8.
Overvelde
,
J. T. B.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Rational Design of Reconfigurable Prismatic Architected Materials
,”
Nature
,
541
(
7637
), pp.
347
352
.
9.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.
10.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
11.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedra
,”
Symmetry: Art and Science, 2010/1–4, Special Issues for the Festival-Congress, ISIS-Symmetry (International Society for the Interdisciplinary Study of Symmetry)
, pp.
204
213
.
12.
Tachi
,
T.
,
2016
, “
Designing Rigidly Foldable Horns Using Bricard’s Octahedron
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031008
.
13.
Liu
,
S. C.
,
Lv
,
W. L.
,
Chen
,
Y.
, and
Lu
,
G. X.
,
2016
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031002
.
14.
Chen
,
Y.
,
Lv
,
W. L.
,
Li
,
J. L.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
15.
Wei
,
G.
, and
Dai
,
J. S.
,
2009
, “
Geometry and Kinematic Analysis of an Origami-Evolved Mechanism Based on Artmimetics
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, IEEE, pp.
450
455
.
16.
Feng
,
H.
,
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6R Linkages
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051003
.
17.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
18.
Yellowhorse
,
A. D.
,
Brown
,
N.
, and
Howell
,
L. L.
,
2020
, “
Design of Regular One-Dimensional, Two-Dimensional, and Three-Dimensional Linkage-Based Tessellations
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021104
.
19.
Gu
,
Y. Q.
,
Wei
,
G. W.
, and
Chen
,
Y.
,
2021
, “
Thick-Panel Origami Cube
,”
Mech. Mach. Theory
,
164
, p.
104411
.
20.
Matsuo
,
H.
,
Asada
,
H. H.
, and
Takeda
,
Y.
,
2020
, “
Design of a Novel Mutliple-DOF Extendable Arm With Rigid Components Inspired by a Deployable Origami Structure
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2730
2737
.
21.
Tachi
,
T.
,
2010
, “
Rigid-Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
Singapore
,
July 13–17
, pp.
253
264
.
22.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidily Foldable Origami
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, American Society of Mechanical Engineers, p. V05BT08A054.
23.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021106
.
24.
Lv
,
W.
,
Chen
,
Y.
, and
Zhang
,
J.
,
2022
, “
Thick-Panel Origami Tubes With Hexagonal Cross-Sections
,”
ASME J. Mech. Rob.
25.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
26.
Kim
,
S. J.
,
Lee
,
D. Y.
,
Jung
,
G. P.
, and
Cho
,
K. J.
,
2018
, “
An Origami-Inspired, Self-Locking Robotic Arm That Can be Folded Flat
,”
Sci. Rob.
,
3
(
16
), p.
eaar2915
.
27.
Liu
,
X. L.
,
Yao
,
S.
,
Cook
,
B. S.
,
Tentzeris
,
M. M.
, and
Georgakopoulos
,
S. V.
,
2015
, “
An Origami Reconfigurable Axial-Mode Bifilar Helical Antenna
,”
IEEE Trans. Antennas Propag.
,
63
(
12
), pp.
5897
5903
.
28.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
430
438
.
You do not currently have access to this content.