Abstract

Rigidly foldable origami tubes can be kinematically regarded as assemblies of spherical linkages. They have exhibited excellent properties for deployable structures. Yet, for the engineering applications, the corresponding thick-panel forms have to be designed. In this paper, the spherical 4R linkages in tubes with hexagonal cross-sections are partially replaced by spatial linkages, leading to a method to construct the thick-panel tubes, which can reproduce kinematic motions equivalent to those realized using zero-thickness origami. Based on the D–H matrix method, the rotational symmetric and symmetric tubes are introduced, together with their four types of vertexes, where the specific spherical 4R linkages are replaced by Bennett and Bricard linkages to obtain the thick-panel foldable tubes. The approach can be applied to multilayered tubes with a straight or curved profile, whose manufacture can be simplified by removing extra links. The results can be readily utilized to the design of deployable tubular structures whose thickness cannot be disregarded.

References

1.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts As a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
2.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
3.
Tachi
,
T.
,
2009
, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,”
International Association for Shell and Spatial Structures (IASS) Symposium, Universidad Politecnica de Valencia
,
Spain
,
Sept. 28–Oct. 3
, pp.
2295
2305
.
4.
Tachi
,
T.
,
2010
, “Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh,”
Advances in Architectural Geometry 2010
,
Springer
,
Vienna
.
5.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedral
,”
Symmetry: Art and Science
,
2010
, pp.
204
213
. http://origami.c.u-tokyo.ac.jp/
6.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi–Miura Polyhedron Bellows
,”
Proc. R. Soc. A
,
469
(
2159
), p.
20130351
.
7.
Liu
,
S.
,
Lv
,
W.
,
Chen
,
Y.
, and
Lu
,
G.
,
2016
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
J. Mech. Rob.
,
8
(
3
), p.
031002
.
8.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
J. Mech. Rob.
,
9
(
2
), p.
021002
.
9.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
10.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.
11.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150607
.
12.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami
,
5
, pp.
253
264
.
13.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidily Foldable Origami
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
46377
, Paper No.
V05BT08A054
.
14.
Tolman
,
K. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2017
, “
Split-Vertex Technique for Thickness-Accommodation in Origami-Based Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
58189
, Paper No.
V05BT08A054
.
15.
Jianguo
,
C.
,
2016
, “
Kinematic Analysis of Foldable Plate Structures With Rolling Joints
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034502
.
16.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031003
.
17.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021106
.
18.
Bennett
,
G.
,
1903
, “
A New Mechanism
,”
Engineering
,
1903
(
76
), pp.
777
778
.
19.
Hoberman
,
C.
,
2010
, “
Folding Structures Made of Thick Hinged Sheets
,” U.S. Patent No. 7,794,019, U.S. Patent and Trademark Office, Washington, DC.
20.
Hoberman
,
C. S.
,
1988
, “
Reversibly Expandable Three-Dimensional Structure
,” U.S. Patent No. 4,780,344, U.S. Patent and Trademark Office, Washington, DC.
21.
De Temmerman
,
I. A. N.
,
Mollaert
,
M.
,
Van Mele
,
I. A. T.
, and
De Laet
,
I. A. L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.
22.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
23.
Myard
,
F. E.
,
1931
, “
Contribution à la géométrie des systèmes articulés
,”
Bull. Soc. Math. France
,
59
, pp.
183
210
.
24.
Marcolongo
,
R.
,
1928
, “
Bricard, R.-Leçons De Cinématique
,”
Sci., Riv. Sci.
,
22
(
44
), pp.
419
419
.
25.
Gu
,
Y.
,
Wei
,
G.
, and
Chen
,
Y.
,
2021
, “
Thick-Panel Origami Cube
,”
Mech. Mach. Theory
,
164
, p.
104411
.
26.
Hartenberg
,
R.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
27.
Cundy
,
H.
,
2013
,
A. Rollett, Mathematical Models
,
Oxford University Press
,
New York
.
28.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
29.
Wei
,
G.
, and
Dai
,
J. S.
,
2009
, “
Geometry and Kinematic Analysis of an Origami-Evolved Mechanism Based on Artmimetics
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, IEEE, pp.
450
455
.
30.
Feng
,
H.
,
2018
, “
Kinematics of Spatial Linkages and Its Applications to Rigid Origami
,” Ph.D. thesis,
Université Clermont Auvergne
.
You do not currently have access to this content.