Abstract

Origami is rapidly gaining prominence in the research of metamaterials as it allows for tuning the properties of interest by change in the folded state. Origami-based lattices that allow low-frequency wave-propagation can potentially find use as acoustic metamaterials. Rigid-panel origami tessellations have lattice modes which are exclusively due to the low-energy folding deformations at creases and hence will be suitable for low-frequency wave-propagation applications. Modeling frameworks like bar-and-hinge that are typically used to study origami lattice mechanics allow for panel stretching behavior which is forbidden and redundant in rigid-panel origami lattices. This drives the necessity for an efficient analysis framework dealing exclusively with folding-angles for the study of origami lattices with rigid panels. As a first step in this direction, in this paper, we propose a folding-angle-based analytical framework for structural modeling of infinite lattices of triangulated Miura-ori (an origami pattern studied widely for its metamaterial applications) with rigid panels. We assign rotational stiffness to the creases and analytically derive the stiffness matrix for the lattices based on a minimal number of folding-angle degrees of freedom. Finally, we study the influence of the equilibrium state of folding and the relative crease stiffness on the modal energies, to demonstrate the tunable and programmable nature of the structure. The framework proposed in our work could enable the study of wave dynamics in rigid-panel Miura-ori-based lattices and our findings show significant promise for the future use of 1D origami with rigid panels as acoustic metamaterials.

References

1.
Christensen
,
J.
,
Kadic
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
3
), pp.
453
462
.
2.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
3.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
4.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
5.
Pratapa
,
P. P.
,
Liu
,
K.
, and
Paulino
,
G. H.
,
2019
, “
Geometric Mechanics of Origami Patterns Exhibiting Poisson’s Ratio Switch by Breaking Mountain and Valley Assignment
,”
Phys. Rev. Lett.
,
122
(
15
), p.
155501
.
6.
Vasudevan
,
S. P.
, and
Pratapa
,
P. P.
,
2021
, “
Origami Metamaterials With Near-Constant Poisson Functions Over Finite Strains
,”
J. Eng. Mech.
,
147
(
11
), p.
04021093
.
7.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), p.
1700360
.
8.
Babaee
,
S.
,
Overvelde
,
J. T.
,
Chen
,
E. R.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2016
, “
Reconfigurable Origami-Inspired Acoustic Waveguides
,”
Sci. Adv.
,
2
(
11
), p.
e1601019
.
9.
Yasuda
,
H.
,
Miyazawa
,
Y.
,
Charalampidis
,
E. G.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2019
, “
Origami-Based Impact Mitigation Via Rarefaction Solitary Wave Creation
,”
Sci. Adv.
,
5
(
5
), p.
eaau2835
.
10.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), pp.
1
10
.
11.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
12.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.
13.
Pratapa
,
P. P.
,
Liu
,
K.
,
Vasudevan
,
S. P.
, and
Paulino
,
G. H.
,
2021
, “
Reprogrammable Kinematic Branches in Tessellated Origami Structures
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031004
.
14.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.-W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.
15.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
16.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
17.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), pp.
1
13
.
18.
Schenk
,
M.
,
2011
, “
Folded Shell Structures
,” Ph.D. thesis,
University of Cambridge
.
19.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
20.
Miura
,
K.
, and
Lang
,
R. J.
,
2009
, “
The Science of Miura-ori: A Review
,”
Origami
,
4
, pp.
87
99
.
21.
Evans
,
A. A.
,
Silverberg
,
J. L.
, and
Santangelo
,
C. D.
,
2015
, “
Lattice Mechanics of Origami Tessellations
,”
Phys. Rev. E
,
92
(
1
), p.
013205
.
22.
Pratapa
,
P. P.
,
Suryanarayana
,
P.
, and
Paulino
,
G. H.
,
2018
, “
Bloch Wave Framework for Structures With Nonlocal Interactions: Application to the Design of Origami Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
118
, pp.
115
132
.
23.
Liu
,
K.
,
Zegard
,
T.
,
Pratapa
,
P. P.
, and
Paulino
,
G. H.
,
2019
, “
Unraveling Tensegrity Tessellations for Metamaterials With Tunable Stiffness and Bandgaps
,”
J. Mech. Phys. Solids
,
131
, pp.
147
166
.
24.
Yasuda
,
H.
,
Chong
,
C.
,
Charalampidis
,
E. G.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2016
, “
Formation of Rarefaction Waves in Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
4
), p.
043004
.
25.
Huang
,
H.-H.
, and
Sun
,
C.-T.
,
2012
, “
Anomalous Wave Propagation in a One-Dimensional Acoustic Metamaterial Having Simultaneously Negative Mass Density and Young’s Modulus
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2887
2895
.
26.
Zhou
,
Y.
,
Wei
,
P.
, and
Tang
,
Q.
,
2016
, “
Continuum Model of a One-Dimensional Lattice of Metamaterials
,”
Acta Mech.
,
227
(
8
), pp.
2361
2376
.
27.
Xu
,
Z.-L.
,
Xu
,
S.-F.
, and
Chuang
,
K.-C.
,
2021
, “
Coupled Flexural-Longitudinal Waves in an Origami Metamaterial With Uncoupled Creases
,”
Phys. Lett. A
,
396
, p.
127232
.
28.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.
29.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
30.
Guest
,
S.
, and
Hutchinson
,
J.
,
2003
, “
On the Determinacy of Repetitive Structures
,”
J. Mech. Phys. Solids
,
51
(
3
), pp.
383
391
.
31.
Lahiri
,
A.
, and
Pratapa
,
P. P.
,
2021
, “
Inhomogeneous Folding Modes in Infinite Lattices of Rigid Triangulated Miura-ori
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Virtual Online, Aug. 17–19, vol. 85451, p. V08BT08A035.
32.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
New York
.
33.
Zhang
,
Q.
,
Li
,
Y.
,
Kueh
,
A. B.
,
Qian
,
Z.
, and
Cai
,
J.
,
2022
, “
Folding Responses of Origami-Inspired Structures Connected by Groove Compliant Joints
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031010
.
34.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2021
, “
Embedded Actuation for Shape-Adaptive Origami
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081703
.
You do not currently have access to this content.