Abstract

The robotic hand plays an extremely significant role in completing various robotic tasks, especially for a robot to complete different grasping tasks. In this paper, we propose a novel multi-fingered bionic hand with variable stiffness for robotic grasp. First, based on the analysis of the human hand, we design the modular finger with variable stiffness mechanism and the flexible thumb with dual-link independent mechanism. Second, the multi-fingered bionic hand composed of three modular fingers and one flexible thumb is presented, which possesses 14 degrees-of-freedom (DoFs). Then, the parameters of the designed hand are analyzed to obtain the stiffness characteristics and working space. Furthermore, the grasping control method based on position control and force control is proposed for robotic grasp. Finally, a series of experiments are designed to verify the effectiveness of the designed hand and the proposed method. The experimental results show that (1) the designed variable stiffness mechanism can be used to adjust the stiffness of hand fingers, (2) the proposed method can effectively control the grasping force under different stiffness conditions, and (3) the designed hand can successfully grasp different types of objects by various grasping strategies.

References

1.
Kashef
,
S. R.
,
Amini
,
S.
, and
Akbarzadeh
,
A.
,
2020
, “
Robotic Hand: A Review on Linkage-Driven Finger Mechanisms of Prosthetic Hands and Evaluation of the Performance Criteria
,”
Mech. Mach. Theory
,
145
, p.
103677
.
2.
Wang
,
C.
,
Zhang
,
X. H.
,
Zang
,
X. Z.
,
Liu
,
Y. B.
,
Ding
,
G. W.
,
Yin
,
W. X.
, and
Zhao
,
J.
,
2020
, “
Feature Sensing and Robotic Grasping of Objects With Uncertain Information: A Review
,”
Sensors
,
20
(
13
), p.
3707
.
3.
Liu
,
Y. H.
,
Qian
,
K.
,
Xu
,
X.
,
Zhou
,
B.
, and
Fang
,
F.
,
2022
, “
Grasp Pose Learning From Human Demonstration With Task Constraints
,”
J. Intell. Robot. Syst.
,
105
(
2
), pp.
1
18
.
4.
Mouazé
,
N.
, and
Birglen
,
L.
,
2021
, “
Deformation Modeling of Compliant Robotic Fingers Grasping Soft Objects
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011009
.
5.
Chen
,
Z.
,
Wu
,
Q.
,
Hong
,
C.
, and
Zhang
,
X. M.
,
2021
, “
Multi-Fingered Grasping Force Optimization Based on Generalized Penalty-Function Concepts
,”
Robot. Auton. Syst.
,
135
, p.
103672
.
6.
Wang
,
C.
,
Zang
,
X. Z.
,
Zhang
,
X. H.
,
Liu
,
Y. B.
, and
Zhao
,
J.
,
2021
, “
Parameter Estimation and Object Gripping Based on Fingertip Force/Torque Sensors
,”
Measurement
,
179
, p.
109479
.
7.
Gao
,
Y.
,
Huang
,
X. G.
,
Mann
,
S. I.
, and
Su
,
H. J.
,
2020
, “
A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051013
.
8.
Wang
,
C.
,
Zang
,
X. Z.
,
Zhang
,
H.
,
Chen
,
H. L.
,
Lin
,
Z. K.
, and
Zhao
,
J.
,
2021
, “
Status Identification and Object In-Hand Reorientation Using Force/Torque Sensors
,”
IEEE Sens. J.
,
21
(
18
), pp.
20694
20703
.
9.
Zhang
,
Z.
,
Igathinathane
,
C.
,
Li
,
J.
,
Cen
,
H.
,
Lu
,
Y.
, and
Flores
,
P.
,
2020
, “
Technology Progress in Mechanical Harvest of Fresh Market Apples
,”
Comput. Electron. Agric.
,
175
, p.
105606
.
10.
Pons
,
J. L.
,
Ceres
,
R.
, and
Pfeiffer
,
F.
,
1999
, “
Multifingered Dexterous Robotics Hand Design and Control: A Review
,”
Robotica
,
17
(
6
), pp.
661
674
.
11.
Honarpardaz
,
M.
,
Tarkian
,
M.
,
Ölvander
,
J.
, and
Feng
,
X.
,
2017
, “
Finger Design Automation for Industrial Robot Grippers: A Review
,”
Robot. Auton. Syst,.
,
87
, pp.
104
119
.
12.
Okada
,
T.
,
1979
, “
Object-Handling System for Manual Industry
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
2
), pp.
79
89
.
13.
Mason
,
M. T.
,
1985
, “
The Mechanics of Manipulation
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
St. Louis, MO
,
Mar. 25–28
, pp.
544
548
.
14.
Jacobsen
,
S. C.
,
Wood
,
J. E.
,
Knutti
,
D. F.
, and
Biggers
,
K. B.
,
1984
, “
The UTAH/MIT Dexterous Hand: Work in Progress
,”
Int. J. Robot. Res.
,
3
(
4
), pp.
21
50
.
15.
Andrychowicz
,
M.
,
Baker
,
B.
,
Chociej
,
M.
,
Józefowicz
,
R.
,
McGrew
,
B.
,
Pachocki
,
J.
,
Petron
,
A.
, et al
,
2020
, “
Learning Dexterous In-Hand Manipulation
,”
Int. J. Robot. Res.
,
39
(
1
), pp.
3
20
.
16.
Grebenstein
,
M.
,
Chalon
,
M.
,
Friedl
,
W.
,
Haddadin
,
S.
,
Wimböck
,
T.
,
Hirzinger
,
G.
, and
Siegwart
,
R.
,
2012
, “
The Hand of the DLR Hand Arm System: Designed for Interaction
,”
Int. J. Robot. Res.
,
31
(
13
), pp.
1531
1555
.
17.
Friedl
,
W.
,
Hannes
,
H.
,
Petit
,
F.
, and
Hirzinger
,
G.
,
2011
, “
Wrist and Forearm Rotation of the DLR Hand Arm System: Mechanical Design, Shape Analysis and Experimental Validation
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
, pp.
1836
1842
.
18.
Liu
,
H.
,
Wu
,
K.
,
Meusel
,
P.
,
Seitz
,
N.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
,
Fan
,
S. W.
,
Lan
,
T.
, and
Chen
,
Z. P.
,
2008
, “
Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS)
,
Nice, France
,
Sept. 22–26
, pp.
3692
3697
.
19.
Liu
,
H.
,
Meusel
,
P.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
, and
Xie
,
Z. W.
,
2008
, “
The Modular Multisensory DLR-HIT-Hand: Hardware and Software Architecture
,”
IEEE-ASME Trans. Mechatron.
,
13
(
4
), pp.
461
469
.
20.
Kim
,
Y. J.
,
Lee
,
Y.
,
Kim
,
J.
,
Lee
,
J. W.
,
Park
,
K. M.
,
Roh
,
K. S.
, and
Choi
,
J. Y.
,
2014
, “
RoboRay Hand: A Highly Backdrivable Robotic Hand With Sensorless Contact Force Measurements
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
6712
6718
.
21.
Jeong
,
S. H.
,
Kim
,
K. S.
, and
Kim
,
S.
,
2017
, “
Designing Anthropomorphic Robot Hand With Active Dual-Mode Twisted String Actuation Mechanism and Tiny Tension Sensors
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1571
1578
.
22.
Wang
,
R. G.
,
Huang
,
H. B.
,
Xu
,
R. H.
,
Li
,
K. G.
, and
Dai
,
J. S.
,
2021
, “
Design of a Novel Simulated “Soft” Mechanical Grasper
,”
Mech. Mach. Theory
,
158
, p.
104240
.
23.
Sun
,
H. L.
,
Sun
,
W.
,
Chen
,
B.
,
Hou
,
Y.
, and
Kong
,
J. Y.
,
2022
, “
Design, Analysis, and Experiment of a Scissor-Shaped Deployable Metamorphic Hand
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
064502
.
24.
Yang
,
H. S.
,
Wei
,
G. W.
,
Ren
,
L.
,
Qian
,
Z. H.
,
Wang
,
K. Y.
,
Xiu
,
H. H.
, and
Liang
,
W.
,
2021
, “
An Affordable Linkage-and-Tendon Hybrid-Driven Anthropomorphic Robotic Hand—MCR-Hand II
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
024502
.
25.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H. J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
.
26.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D’Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Robot.
,
2
(
3
), pp.
107
116
.
27.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
28.
Yan
,
J. H.
,
Xu
,
Z. D.
,
Shi
,
P. P.
, and
Zhao
,
J.
,
2021
, “
A Human-Inspired Soft Finger With Dual-Mode Morphing Enabled by Variable Stiffness Mechanism
,”
Soft Robot.
,
9
(
2
), pp.
399
411
.
29.
Melchiorri
,
C.
,
Palli
,
G.
,
Berselli
,
G.
, and
Vassura
,
G.
,
2013
, “
Development of the UB Hand IV: Overview of Design Solutions and Enabling Technologies
,”
IEEE Robot. Autom. Mag.
,
20
(
3
), pp.
72
81
.
30.
Firouzeh
,
A.
,
Salerno
,
M.
, and
Paik
,
J.
,
2017
, “
Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis
,”
IEEE Trans. Robot.
,
33
(
4
), pp.
765
777
.
31.
Hammond
,
L. F.
, III
,
Wu
,
F.
, and
Asada
,
H. H.
,
2018
,
Variable Stiffness Pneumatic Structures for Wearable Supernumerary Robotic Devices
,
Springer
,
Cham
, pp.
201
217
.
32.
Mahboubi
,
S.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2018
, “
Variable Stiffness Robotic Hand for Stable Grasp and Flexible Handling
,”
IEEE Access.
,
6
, pp.
68195
68209
.
33.
ElKoura
,
G.
, and
Singh
,
K.
,
2003
, “
Handrix: Animating the Human Hand
,”
Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
,
July 26–27
, pp.
110
119
.
34.
Napier
,
J. R.
,
1956
, “
The Prehensile Movements of the Human Hand
,”
J. Bone Joint Surg. Br.
,
38
(
4
), pp.
902
913
.
35.
Kamakura
,
N.
,
Matsuo
,
M.
,
Ishii
,
H.
,
Mitsuboshi
,
F.
, and
Miura
,
Y.
,
1980
, “
Patterns of Static Prehension in Normal Hands
,”
Am. J. Occup. Ther.
,
34
(
7
), pp.
437
445
.
36.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Robot. Autom.
,
5
(
3
), pp.
269
279
.
37.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H. B.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2016
, “
The Grasp Taxonomy of Human Grasp Types
,”
IEEE Trans. Hum. Mach. Syst.
,
46
(
1
), pp.
66
77
.
38.
Li
,
J. F.
,
Zhang
,
Z. J.
,
Zhang
,
L. Y.
,
Tao
,
C. J.
,
Ji
,
R.
, and
Fan
,
J. H.
,
2018
, “
Review of the Kinematic Compatibility Design of Hand Exoskeletons
,”
J. Shanghai Jiaotong Univ.
,
52
(
6
), pp.
729
742
.
39.
Xue
,
Y. X.
,
Ju
,
Z. J.
,
Xiang
,
K.
,
Chen
,
J.
, and
Liu
,
H. H.
,
2018
, “
Multimodal Human Hand Motion Sensing and Analysis—A Review
,”
IEEE Trans. Cogn. Dev. Syst.
,
11
(
2
), pp.
162
175
.
40.
Lin
,
J.
,
Wu
,
Y.
, and
Huang
,
T. S.
,
2000
, “
Modeling the Constraints of Human Hand Motion
,”
Proceedings of the IEEE Workshop on Human Motion
,
Austin, TX
,
Dec. 7–8
, pp.
121
126
.
41.
Ju
,
Z. J.
, and
Liu
,
H. H.
,
2013
, “
Human Hand Motion Analysis With Multisensory Information
,”
IEEE ASME Trans. Mechatron.
,
19
(
2
), pp.
456
466
.
42.
Honda
,
Y.
,
Miyazaki
,
F.
, and
Nishikawa
,
A.
,
2010
, “
Control of Pneumatic Five-Fingered Robot Hand Using Antagonistic Muscle Ratio and Antagonistic Muscle Activity
,”
Proceedings of 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Tokyo, Japan
,
Sept. 26–29
, pp.
337
342
.
43.
Bullock
,
I. M.
,
Zheng
,
J. Z.
,
Rosa
,
S. D. L.
,
Guertler
,
C.
, and
Dolla
,
A. M. R.
,
2013
, “
Grasp Frequency and Usage in Daily Household and Machine Shop Tasks
,”
IEEE Trans. Haptics
,
6
(
3
), pp.
296
308
.
44.
Hang
,
K.
,
Bircher
,
W. G.
,
Morgan
,
A. S.
, and
Dollar
,
A. M.
,
2021
, “
Manipulation for Self-Identification, and Self-Identification for Better Manipulation
,”
Sci. Robot.
,
6
(
54
), p.
10229751
.
45.
Li
,
G. T.
,
Xu
,
P.
,
Qiao
,
S. L.
, and
Li
,
B.
,
2021
, “
Stability Analysis and Optimal Enveloping Grasp Planning of a Deployable Robotic Hand
,”
Mech. Mach. Theory
,
158
, p.
104241
.
46.
Harada
,
K.
, and
Kaneko
,
M.
,
1998
, “
Enveloping Grasp for Multiple Objects-Kinematics and Shovelling Up Condition
,”
J. Robot. Soc. Jpn.
,
16
(
6
), pp.
860
867
.
47.
Salimi
,
S.
, and
Bone
,
G. M.
,
2008
, “
Kinematic Enveloping Grasp Planning Method for Robotic Dexterous Hands and Three-Dimensional Objects
,”
Robotica
,
26
(
3
), pp.
331
344
.
48.
Rodriguez
,
A.
,
Mason
,
M. T.
, and
Ferry
,
S.
,
2012
, “
From Caging to Grasping
,”
Int. J. Robot. Res.
,
31
(
7
), pp.
886
900
.
49.
Kwok
,
T. H.
,
Wan
,
W. W.
,
Pan
,
J.
,
Wang
,
C. C. L.
,
Yuan
,
J. J.
,
Harada
,
K.
, and
Chen
,
Y.
,
2016
, “
Rope Caging and Grasping
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
1980
1986
.
50.
Maeda
,
Y.
,
Kodera
,
N.
, and
Egawa
,
T.
,
2012
, “
Caging-Based Grasping by a Robot Hand With Rigid and Soft Parts
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Saint Paul, MN
,
May 14–18
, pp.
5150
5155
.
51.
Bohg
,
J.
,
Morales
,
A.
,
Asfour
,
T.
, and
Kragic
,
D.
,
2013
, “
Data-Driven Grasp Synthesis—A Survey
,”
IEEE Trans. Robot.
,
30
(
2
), pp.
289
309
.
You do not currently have access to this content.