Abstract

This article introduces a haptic-guided teleoperation framework using a series elastic actuator (SEA)-based compliant gripper. The proposed teleoperation system involves one local haptic device, one layer of virtual reality, and one remote industrial manipulator with a compliant gripper. The overall compliance of the teleoperation is distributed between the software and hardware components of the bilateral loop. On the one hand, the implemented haptic guidance is based on an elementary coupling model uniquely defined and established for all interactions among the user, remote manipulator, and virtual interface. On the other hand, the manipulator operating in the remote environment is equipped with a novel compliant gripper based on series elastic actuators, providing passive compliance at the interactions with the environment. Introducing the gripper into the haptic loop is expected to compensate for disturbances due to inaccurate modeling and/or unmodeled dynamics of the remote environment and external effects. The teleoperation system is implemented for manipulation and tracking tasks and tested with different users. Experimental results show that the haptic guidance and the compliant gripper together significantly improve the teleoperation performances in terms of transparency.

References

1.
Berthet-Rayne
,
P.
,
Leibrandt
,
K.
,
Gras
,
G.
,
Fraisse
,
P.
,
Crosnier
,
A.
, and
Yang
,
G.-Z.
,
2018
, “
Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2501
2508
.
2.
Mendoza
,
M.
,
Bonilla
,
I.
,
González-Galván
,
E.
, and
Reyes
,
F.
,
2016
, “
Impedance Control in a Wave-Based Teleoperator for Rehabilitation Motor Therapies Assisted by Robots
,”
Comput. Methods Programs Biomed.
,
123
, pp.
54
67
.
3.
Ralston
,
J. C.
,
Hainsworth
,
D. W.
,
Reid
,
D. C.
,
Anderson
,
D.
, and
McPhee
,
R. J.
,
2001
, “
Recent Advances in Remote Coal Mining Machine Sensing, Guidance, and Teleoperation
,”
Robotica
,
19
(
5
), pp.
513
526
.
4.
Wang
,
Z.
,
Lam
,
H.-K.
,
Xiao
,
B.
,
Chen
,
Z.
,
Liang
,
B.
, and
Zhang
,
T.
,
2020
, “
Event-Triggered Prescribed-Time Fuzzy Control for Space Teleoperation Systems Subject to Multiple Constraints and Uncertainties
,”
IEEE Trans. Fuzzy Syst.
,
29
(
9
), pp.
2785
2797
.
5.
Wang
,
T.
,
Li
,
Y.
,
Zhang
,
J.
, and
Zhang
,
Y.
,
2020
, “
A Novel Bilateral Impedance Controls for Underwater Tele-Operation Systems
,”
Appl. Soft. Comput.
,
91
, p.
106194
.
6.
Bandala
,
M.
,
West
,
C.
,
Monk
,
S.
,
Montazeri
,
A.
, and
Taylor
,
C. J.
,
2019
, “
Vision-Based Assisted Tele-Operation of a Dual-Arm Hydraulically Actuated Robot for Pipe Cutting and Grasping in Nuclear Environments
,”
Robotics
,
8
(
2
), p.
42
.
7.
van Oosterhout
,
J.
,
Heemskerk
,
C.
,
de Baar
,
M.
,
van der Helm
,
F.
, and
Abbink
,
D.
,
2018
, “
Haptic Shared Control in Tele-Manipulation: Effects of Inaccuracies in Guidance on Task Execution
,”
IEEE Trans. Haptics
,
11
, pp.
128
139
.
8.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE. Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
9.
Hokayem
,
P. F.
, and
Spong
,
M. W.
,
2006
, “
Bilateral Teleoperation: An Historical Survey
,”
Automatica
,
42
(
12
), pp.
2035
2057
.
10.
Bolopion
,
A.
,
Xie
,
H.
,
Haliyo
,
D. S.
, and
Régnier
,
S.
,
2010
, “
Haptic Teleoperation for 3-D Microassembly of Spherical Objects
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
116
127
.
11.
Nudehi
,
S. S.
,
Mukherjee
,
R.
, and
Ghodoussi
,
M.
,
2005
, “
A Shared-Control Approach to Haptic Interface Design for Minimally Invasive Telesurgical Training
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
588
592
.
12.
Stefanov
,
N.
,
Passenberg
,
C.
,
Peer
,
A.
, and
Buss
,
M.
,
2013
, “
Design and Evaluation of a Haptic Computer-Assistant for Telemanipulation Tasks
,”
IEEE Trans. Human-Mach. Syst.
,
43
(
4
), pp.
385
397
.
13.
Basdogan
,
C.
,
Kiraz
,
A.
,
Bukusoglu
,
I.
,
Varol
,
A.
, and
Doğanay
,
S.
,
2007
, “
Haptic Guidance for Improved Task Performance in Steering Microparticles With Optical Tweezers
,”
Optics Express
,
15
(
18
), pp.
11616
11621
.
14.
He
,
X.
, and
Chen
,
Y.
,
2009
, “
Haptic-Aided Robot Path Planning Based on Virtual Tele-Operation
,”
Rob. Comput.-Integr. Manuf.
,
25
(
4–5
), pp.
792
803
.
15.
De Santis
,
A.
,
Albu-Schaffer
,
A.
,
Ott
,
C.
,
Siciliano
,
B.
, and
Hirzinger
,
G.
,
2007
, “
The Skeleton Algorithm for Self-Collision Avoidance of a Humanoid Manipulator
,”
2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Zürich, Switzerland
,
Sept. 4–7
, IEEE, pp.
1
6
.
16.
Abbott
,
J. J.
, and
Okamura
,
A. M.
,
2003
, “
Virtual Fixture Architectures for Telemanipulation
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 2, IEEE, pp.
2798
2805
.
17.
Selvaggio
,
M.
,
Chen
,
F.
,
Gao
,
B.
,
Notomista
,
G.
,
Trapani
,
F.
, and
Caldwell
,
D.
,
2016
, “
Vision Based Virtual Fixture Generation for Teleoperated Robotic Manipulation
,”
2016 International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Macau, China
,
Aug. 18–20
, IEEE, pp.
190
195
.
18.
Bettini
,
A.
,
Marayong
,
P.
,
Lang
,
S.
,
Okamura
,
A. M.
, and
Hager
,
G. D.
,
2004
, “
Vision-Assisted Control for Manipulation Using Virtual Fixtures
,”
IEEE Trans. Rob.
,
20
(
6
), pp.
953
966
.
19.
Abi-Farraj
,
F.
,
Pedemonte
,
N.
, and
Giordano
,
P. R.
,
2016
, “
A Visual-Based Shared Control Architecture for Remote Telemanipulation
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
4266
4273
.
20.
Boessenkool
,
H.
,
Abbink
,
D. A.
,
Heemskerk
,
C. J.
,
van der Helm
,
F. C.
, and
Wildenbeest
,
J. G.
,
2012
, “
A Task-Specific Analysis of the Benefit of Haptic Shared Control During Telemanipulation
,”
IEEE Trans. Haptics
,
6
(
1
), pp.
2
12
.
21.
Khademian
,
B.
, and
Hashtrudi-Zaad
,
K.
,
2011
, “
Shared Control Architectures for Haptic Training: Performance and Coupled Stability Analysis
,”
Int. J. Rob. Res.
,
30
(
13
), pp.
1627
1642
.
22.
Budolak
,
D.
, and
Ben-Tzvi
,
P.
,
2019
, “
Series Elastic Actuation for Improved Transparency in Time Delayed Haptic Teleoperation
,”
Mechatronics
,
63
, p.
102278
.
23.
Awad
,
M. I.
,
Gan
,
D.
,
Hussain
,
I.
,
Az-Zu’bi
,
A.
,
Stefanini
,
C.
,
Khalaf
,
K.
,
Zweiri
,
Y.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2018
, “
Design of a Novel Passive Binary-Controlled Variable Stiffness Joint (BpVSJ) Towards Passive Haptic Interface Application
,”
IEEE Access
,
6
, pp.
63045
63057
.
24.
Petković
,
D.
,
Pavlović
,
N. D.
,
Shamshirband
,
S.
, and
Anuar
,
N. B.
,
2013
, “
Development of a New Type of Passively Adaptive Compliant Gripper
,”
Ind. Robot: An Int. J.
,
40
(
6
), pp.
610
623
.
25.
Gao
,
Y.
,
Huang
,
X.
,
Mann
,
I. S.
, and
Su
,
H.-J.
,
2020
, “
A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051013
.
26.
Zang
,
X.
,
Wang
,
C.
,
Zhang
,
P.
,
Liu
,
G.
,
Zhang
,
X.
, and
Zhao
,
J.
,
2022
, “
A Novel Design of a Multi-Fingered Bionic Hand With Variable Stiffness for Robotic Grasp
,”
ASME J. Mech. Rob.
, pp.
1
40
.
27.
Mouazé
,
N.
, and
Birglen
,
L.
,
2020
, “
Deformation Modeling of Compliant Robotic Fingers Grasping Soft Objects
,”
J. Mech. Rob.
,
13
(
1
), p.
011009
.
28.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, Vol. 1, pp.
399
406
.
29.
Cheng
,
M.
,
Fan
,
S.
,
Yang
,
D.
, and
Jiang
,
L.
,
2020
, “
Design of an Underactuated Finger Based on a Novel Nine-Bar Mechanism
,”
J. Mech. Rob.
,
12
(
6
), p.
065001
.
30.
Mutlu
,
R.
,
Tawk
,
C.
,
Alici
,
G.
, and
Sariyildiz
,
E.
,
2017
, “
A 3D Printed Monolithic Soft Gripper With Adjustable Stiffness
,”
IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society
,
Beijing, China
,
Oct. 29–Nov. 1
, pp.
6235
6240
.
31.
Al Abeach
,
L. A.
,
Nefti-Meziani
,
S.
, and
Davis
,
S.
,
2017
, “
Design of a Variable Stiffness Soft Dexterous Gripper
,”
Soft Rob.
,
4
(
3
), pp.
274
284
.
32.
Liu
,
C.
, and
Chiu
,
C.
,
2018
, “
Design and Prototype of Monolithic Compliant Grippers for Adaptive Grasping
,”
2018 3rd International Conference on Control and Robotics Engineering (ICCRE)
,
Nagoya, Japan
,
Apr. 20–23
, pp.
51
55
.
33.
Chang
,
C.-M.
,
Gerez
,
L.
,
Elangovan
,
N.
,
Zisimatos
,
A.
, and
Liarokapis
,
M.
,
2019
, “
On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands
,”
Front. Neurorob.
,
13
, p.
91
.
34.
Robotiq
,
2018
,
2F-85 and 2F-140-Instruction Manual
,
Robotiq Inc
.,
Canada
.
35.
Kaya
,
O.
,
Tağlıoğlu
,
G. B.
, and
Ertugrul
,
S.
,
2021
, “
The Series Elastic Gripper Design, Object Detection, and Recognition by Touch
,”
J. Mech. Rob.
,
14
(
1
), p.
014501
.
36.
Oh
,
S.
, and
Kong
,
K.
,
2017
, “
High-Precision Robust Force Control of a Series Elastic Actuator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
71
80
.
37.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications
,”
IEEE/ASME Trans. Mechatron.
,
14
(
1
), pp.
105
118
.
38.
Sariyildiz
,
E.
,
Chen
,
G.
, and
Yu
,
H.
,
2016
, “
An Acceleration-Based Robust Motion Controller Design for a Novel Series Elastic Actuator
,”
IEEE. Trans. Ind. Electron.
,
63
(
3
), pp.
1900
1910
.
39.
Liu
,
C.
,
Cheng
,
J.
,
Li
,
Z.
,
Cheng
,
C.
,
Zhang
,
C.
,
Zhang
,
Y.
, and
Zhong
,
R. Y.
,
2020
, “
Design of a Self-Adaptive Gripper With Rigid Fingers for Industrial Internet
,”
Rob. Comput.-Integr. Manuf.
,
65
, p.
101976
.
40.
Russo
,
M.
,
Ceccarelli
,
M.
,
Corves
,
B.
,
Hüsing
,
M.
,
Lorenz
,
M.
,
Cafolla
,
D.
, and
Carbone
,
G.
,
2017
, “
Design and Test of a Gripper Prototype for Horticulture Products
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
266
275
.
41.
Yigit
,
C. B.
,
Bayraktar
,
E.
,
Kaya
,
O.
, and
Boyraz
,
P.
,
2021
, “
External Force/torque Estimation With Only Position Sensors for Antagonistic VSAs
,”
IEEE Trans. Rob.
,
37
(
2
), pp.
675
682
.
42.
Bayraktaroglu
,
Z. Y.
,
Argin
,
O. F.
, and
Haliyo
,
S.
,
2019
, “
A Modular Bilateral Haptic Control Framework for Teleoperation of Robots
,”
Robotica
,
37
(
2
), pp.
338
357
.
43.
Colgate
,
J. E.
,
Stanley
,
M. C.
, and
Brown
,
J. M.
,
1995
, “
Issues in the Haptic Display of Tool Use
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, Vol. 3, IEEE, pp.
140
145
.
44.
Zilles
,
C. B.
, and
Salisbury
,
J. K.
,
1995
, “
A Constraint-Based God-Object Method for Haptic Display
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, Vol. 3, IEEE, pp.
146
151
.
45.
Howard
,
B. M.
, and
Vance
,
J. M.
,
2007
, “
Desktop Haptic Virtual Assembly Using Physically Based Modelling
,”
Virtual Reality
,
11
(
4
), pp.
207
215
.
46.
Hou
,
X.
, and
Sourina
,
O.
,
2013
, “
Stable Adaptive Algorithm for Six Degrees-of-Freedom Haptic Rendering in a Dynamic Environment
,”
Visual Comput.
,
29
(
10
), pp.
1063
1075
.
You do not currently have access to this content.