Abstract

Cuspidal robots can move from one inverse or direct kinematic solution to another without ever passing through a singularity. These robots have remained unknown because almost all industrial robots do not have this feature. However, in fact, industrial robots are the exceptions. Some robots appeared recently in the industrial market can be shown to be cuspidal, but, surprisingly, almost nobody knows it and robot users meet difficulties in planning trajectories with these robots. This article proposes a review on the fundamental and application aspects of cuspidal robots. It addresses the important issues raised by these robots for the design and planning of trajectories. The identification of all cuspidal robots is still an open issue. This article recalls in details the case of serial robots with three joints, but it also addresses robots with more complex architectures such as 6-revolute-jointed robot and parallel robots. We hope that this article will help disseminate more wide knowledge on cuspidal robots.

References

1.
Parenti-Castelli
,
V.
, and
Innocenti
,
C.
,
1988
, “
Position Analysis of Robot Manipulators: Regions and Subregions
,”
Proceedings of 1988 Conference on Advances in Robot Kinematics
,
Ljubljana, Yugoslavia
,
Sept. 19–21
, pp.
151
158
.
2.
Borrel
,
P.
, and
Liégeois
,
A.
,
1986
, “
A Study of Multiple Manipulator Inverse Kinematic Solutions With Applications to Trajectory Planning and Workspace Determination
,”
1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, Vol.
3
,
IEEE
, pp.
1180
1185
.
3.
Wenger
,
P.
,
1992
, “
A New General Formalism for the Kinematic Analysis of All Nonredundant Manipulators
,”
Proceedings 1992 IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
,
IEEE Computer Society
, pp.
442
443
.
4.
El Omri
,
J.
, and
Wenger
,
P.
,
1995
, “
How to Recognize Simply a Non-Singular Posture Changing 3-DOF Manipulator
,”
7th International Conference on Advanced Robotics
,
Tokyo, Japan
,
Sept. 20–22
, pp.
215
222
.
5.
Baili
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2004
, “
A Classification of 3r Orthogonal Manipulators by the Topology of Their Workspace
,”
IEEE International Conference on Robotics and Automation, 2004
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
2
,
IEEE
, pp.
1933
1938
.
6.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1998
, “
Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
73
99
.
7.
Wenger
,
P.
, and
Chablat
,
D.
,
1998
, “Workspace and Assembly Modes in Fully-Parallel Manipulators: A Descriptive Study,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarčič
, and
M. L.
Husty
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
117
126
.
8.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2008
, “
Non-Singular Assembly-Mode Changing Motions for 3-RPR Parallel Manipulators
,”
Mech. Mach. Theory
,
43
(
4
), pp.
480
490
.
9.
Macho
,
E.
,
Altuzarra
,
O.
,
Pinto
,
C.
, and
Hernández
,
A.
,
2008
, “Transitions Between Multiple Solutions of the Direct Kinematic Problem,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarčič
, and
P.
Wenger
, eds.,
Springer
,
Dordrecht
, pp.
301
310
.
10.
Bamberger
,
H.
,
Wolf
,
A.
, and
Shoham
,
M.
,
2008
, “
Assembly Mode Changing in Parallel Mechanisms
,”
IEEE Trans. Rob.
,
24
, pp.
765
772
.
11.
Hernandez
,
A.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Macho
,
E.
,
2009
, “
Defining Conditions for Nonsingular Transitions Between Assembly Modes
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1438
1447
.
12.
DallaLibera
,
F.
, and
Ishiguro
,
H.
,
2014
, “
Non-Singular Transitions Between Assembly Modes of 2-DOF Planar Parallel Manipulators With a Passive Leg
,”
Mech. Mach. Theory
,
77
, pp.
182
197
.
13.
Macho
,
E.
,
Petuya
,
V.
,
Altuzarra
,
O.
, and
Hernández
,
A.
,
2012
, “
Planning Nonsingular Transitions Between Solutions of the Direct Kinematic Problem From the Joint Space
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041005
.
14.
Husty
,
M. L.
,
2009
, “Non-Singular Assembly Mode Change in 3-RPR-Parallel Manipulators,”
Computational Kinematics
,
Kecskeméthy
,
A.
, and
Müller
,
A.
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
51
60
.
15.
Chablat
,
D.
,
Moroz
,
G.
, and
Wenger
,
P.
,
2011
, “
Uniqueness Domains and Non Singular Assembly Mode Changing Trajectories
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
,
IEEE
, pp.
3946
3951
.
16.
Peidró
,
A.
,
María Marín
,
J.
,
Gil
,
A.
, and
Reinoso
,
S.
,
2015
, “
Performing Nonsingular Transitions Between Assembly Modes in Analytic Parallel Manipulators by Enclosing Quadruple Solutions
,”
ASME J. Mech. Des.
,
137
(
12
), p.
122302
.
17.
Caro
,
S.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2012
, “
Non-Singular Assembly Mode Changing Trajectories of a 6-DOF Parallel Robot
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
,
Chicago, IL
,
Aug. 12–15
, Vol.
45035
,
American Society of Mechanical Engineers
, pp.
1245
1254
.
18.
Verheye
,
A.
,
2021
, “
Why Hasn’t Anyone Heard of Cuspidal Robots?
, http://achille0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b, Accessed January 10, 2022.
19.
Chablat
,
D.
,
1998
, “
Uniqueness Domains and Moveability Analysis for Fully-Parallel Manipulators (in French)
,” Ph.D. thesis,
Ecole Centrale de Nantes (ECN)
,
Nantes, France
.
20.
El Omri
,
J.
,
1996
, “
Geometric and Kinematic Analysis of Robot Manipulators (in French)
,” Ph.D. thesis,
Nantes
,
France
.
21.
Baili
,
M.
,
2004
, “
Analysis and Classification of Orthogonal Manipulators (in French)
,” Ph.D. thesis,
Nantes
,
France
.
22.
Salunkhe
,
D. H.
,
Spartalis
,
C.
,
Capco
,
J.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2022
, “
Necessary and Sufficient Condition for a Generic 3r Serial Manipulator to Be Cuspidal
,”
Mech. Mach. Theory
,
171
, p.
104729
.
23.
Whitney
,
H.
,
1955
, “
On Singularities of Mappings of Euclidean Spaces 1. Mappings of the Plane Into the Plane
,”
Ann. Math.
,
62
(
3
), pp.
374
410
.
24.
Pieper
,
D.
,
1968
, “
The Kinematics of Manipulators Under Computer Control
,” Ph.D. thesis,
Standford University
,
Stanford, CA
.
25.
Wenger
,
P.
, and
Chedmail
,
P.
,
1991
, “
Ability of a Robot to Travel Through Its Free Work Space in an Environment With Obstacles
,”
Int. J. Rob. Res.
,
10
(
3
), pp.
214
227
.
26.
Wenger
,
P.
,
2004
, “
Uniqueness Domains and Regions of Feasible Paths for Cuspidal Manipulators
,”
IEEE Trans. Rob.
,
20
(
4
), pp.
754
750
.
27.
Wenger
,
P.
,
1997
, “
Design of Cuspidal and Noncuspidal Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automatics
,
Albuquerque, NM
,
Apr. 25
, pp.
2172
2177
.
28.
Corvez
,
S.
, and
Rouillier
,
F.
,
2004
, “Using Computer Algebra Tools to Classify Serial Manipulators,”
Automated Deduction in Geometry, ADG 2002. Lectures Notes in Computer Science, Vol. 2930
,
F.
Winkler
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
31
43
.
29.
Chablat
,
D.
,
Moroz
,
G.
,
Rouillier
,
F.
, and
Wenger
,
P.
,
2019
, “
Using Maple to Analyse Parallel Robots
,”
Maple Conference
,
Waterloo, Ontario, Canada
,
Oct. 15–17
,
Springer
, pp.
50
64
.
30.
Wenger
,
P.
,
2007
, “
Cuspidal and Noncuspidal Robot Manipulators
,”
Robotica
,
25
(
6
), pp.
677
689
.
31.
Husty
,
M. L.
,
Pfurner
,
M.
, and
Schröcker
,
H.-P.
,
2007
, “
A New and Efficient Algorithm for the Inverse Kinematics of a General Serial 6r Manipulator
,”
Mech. Mach. Theory
,
42
(
1
), pp.
66
81
.
32.
Pfurner
,
M.
,
2009
, “Explicit Algebraic Solution of Geometrically Simple SerialQ12 Manipulators,”
Computational Kinematics
,
A.
Kecskeméthy
, and
A.
Müller
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
167
174
.
33.
Capco
,
J.
,
Safey El Din
,
M.
, and
Schicho
,
J.
,
2020
, “
Robots, Computer Algebra and Eight Connected Components
,”
ISSAC ’20: International Symposium on Symbolic and Algebraic Computation, ISSAC’20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, (Kalamata/Greece)
,
Virtual
,
July 20–23
,
ACM
, pp.
62
69
.
34.
Gosselin
,
C.
, and
Liu
,
H.
,
2014
, “
Polynomial Inverse Kinematic Solution of the Jaco Robot
,”
Volume 5B: 38th Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, p.
V05BT08A055
.
35.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2006
, “
An Exhaustive Study of the Workspace Topologies of all 3R Orthogonal Manipulators with Geometric Simplifications
,”
Mech. Mach. Theory
,
41
(
8
), pp.
971
986
.
36.
Nguyen
,
D. Q.
,
Briot
,
S.
, and
Wenger
,
P.
,
2012
, “
Analysis of the Dynamic Performance of Serial 3r Orthogonal Manipulators
,”
ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
,
Nantes, France
,
July 2–4
, pp.
175
184
.
37.
Wenger
,
P.
, and
Chablat
,
D.
,
1997
, “
Definition Sets for the Direct Kinematics of Parallel Manipulators
,”
1997 8th International Conference on Advanced Robotics
,
Monterey, CA
,
July 7–9
,
IEEE
, pp.
859
864
.
38.
Chablat
,
D.
, and
Wenger
,
P.
,
1998
, “
Working Modes and Aspects in Fully Parallel Manipulators
,”
1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May 20
, Vol.
3
,
IEEE
, pp.
1964
1969
.
39.
Gosselin
,
C.
,
Sefrioui
,
J.
, and
Richard
,
M.
,
1992
, “
Solutions Polynomials Au Probléme De La Cinématique Des Manipulateurs Paralléles Plans á Trois De Gré De Liberté
,”
Mech. Mach. Theory
,
27
, pp.
107
119
.
40.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Solid Mechanics and Its Applications
, Vol.
128, Springer
,
Dordrecht
.
41.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
42.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1992
, “Direct Kinematics of the 6-4 Fully Parallel Manipulator with Position and Orientation Uncoupled,”
Robotic Systems. Microprocessor-Based and Intelligent Systems Engineering, vol. 10
,
S.G.
Tzafestas
, ed.,
Springer
,
Dordrecht
, pp.
3
10
.
43.
Coste
,
M.
,
2012
, “
A Simple Proof That Generic 3-RPR Manipulators Have Two Aspects
,”
J. Mech. Rob.
,
4
, p.
011008
.
44.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2007
, “
Singular Curves in the Joint Space and Cusp Points of 3-RPR Parallel Manipulators
,”
Robotica
,
25
, pp.
717
724
.
45.
Moroz
,
G.
,
Rouiller
,
F.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2010
, “
On the Determination of Cusp Points of 3-RPR Parallel Manipulators
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1555
1567
.
46.
McAree
,
P. R.
, and
Daniel
,
R. W.
,
1999
, “
An Explanation of Never-Special Assembly Changing Motions for 3–3 Parallel Manipulators
,”
Int. J. Rob. Res.
,
18
(
6
), pp.
556
574
.
47.
Merlet
,
J.-P.
,
1996
, “
Direct Kinematics of Planar Parallel Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
4
,
IEEE
, pp.
3744
3749
.
48.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2001
, “
Forward Displacement Analysis of Third-Class Analytic 3-RPR Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
9
), pp.
1009
1018
.
49.
Coste
,
M.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2014
, “Nonsingular Change of Assembly Mode Without Any Cusp,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
O.
Khatib
, eds.,
Springer
,
Cham
, pp.
105
112
.
50.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2000
, “
Determination of the Uniqueness Domains of 3-RPR Planar Parallel Manipulators with Similar Platforms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Baltimore, MD
,
Sept. 10–13
, Vol.
35173
,
American Society of Mechanical Engineers
, pp.
419
426
.
51.
Spartalis
,
C.
, and
Capco
,
J.
,
2022
, “
Topology of the Singularities of 3-RPR Planar Parallel Robots
,”
Comput. Aided Geom. Des.
, p. 102150. .
52.
Wenger
,
P.
,
Chablat
,
D.
, and
Zein
,
M.
,
2007
, “
Degeneracy Study of the Forward Kinematics of Planar 3-RPR Parallel Manipulators
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1265
1268
.
53.
Wenger
,
P.
, and
Chablat
,
D.
,
2009
,
Kinematic Analysis of a Class of Analytic Planar 3-RPR Parallel Manipulators
,
Computational Kinematics
,
Kecskeméthy
,
A.
, and
Müller
,
A.
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
43
50
.
54.
Coste
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2011
, “
Singular Surfaces and Cusps in Symmetric Planar 3-RPR Manipulators
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
1453
1458
.
55.
Chablat
,
D.
, and
Wenger
,
P.
,
1999
, “
On the Characterization of the Regions of Feasible Trajectories in the Workspace of Parallel Manipulators
,”
Tenth World Congress on the Theory of Machines and Mechanisms, Oulu, Finland
,
June 20–24
,
IFTOMM
, pp.
1
6
.
56.
Chablat
,
D.
,
Michel
,
G.
,
Bordure
,
P.
,
Venkateswaran
,
S.
, and
Jha
,
R.
,
2021
, “
Workspace Analysis in the Design Parameter Space of a 2-DOF Spherical Parallel Mechanism for a Prescribed Workspace: Application to the Otologic Surgery
,”
Mech. Mach. Theory
,
157
, p.
104224
.
57.
Chablat
,
D.
,
Michel
,
G.
,
Bordure
,
P.
,
Jha
,
R.
, and
Venkateswaran
,
S.
,
2020
, “Joint Space and Workspace Analysis of a 2-DOF Spherical Parallel Mechanism,”
New Trends in Mechanism and Machine Science. EuCoMeS 2020. Mechanisms and Machine Science, vol. 89
,
D.
Pisla
,
B.
Corves
, and
C.
Vaida
, eds.,
Springer
,
Cham
, pp.
181
188
.
58.
Chablat
,
D.
,
Michel
,
G.
,
Bordure
,
P.
,
Venkateswaran
,
S.
, and
Jha
,
R.
,
2021
, “
Workspace Analysis in the Design Parameter Space of a 2-DOF Spherical Parallel Mechanism for a Prescribed Workspace: Application to the Otologic Surgery
,”
Mech. Mach. Theory
,
157
, p.
104224
.
59.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2002
, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs
,”
2002 Parallel Kinematic Machines International Conference
,
Chemnitz, Germany
,
Apr. 23–25
, pp.
171
188
.
60.
Merlet
,
J.-P.
, and
Daney
,
D.
,
2006
, “
Legs Interference Checking of Parallel Robots Over a Given Workspace Or Trajectory
,”
IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
757
762
.
You do not currently have access to this content.