Abstract

The field of tensegrity faces challenges in design to facilitate efficient fabrication, and modeling due to the antagonistic nature of tension and compression elements. The research presents design methodology, and modeling framework for a human-spine inspired Dexterous continuum Tensegrity manipulatoR (DexTeR). DexTeR is a continuum manipulator that comprises of an assembly of “vertebra” modules fabricated using two curved links and 12 strings, and actuated using motor-tendon actuators. The fabrication methodology involves the construction of the equivalent graph of the module and finding the Euler path that traverses every edge of the graph exactly once. The vertices and edges of the graph correspond to the holes and strings or links of the mechanism. Unlike traditional rigid manipulators, the design results in centralization of the majority of the weight of the actuators at the base with negligible effect on the manipulator dynamics. For the first time in literature, we fabricate a tensegrity manipulator that is assembled using ten modules to conceptually validate the time and cost efficiency of the approach. A dynamic model of a vertebra module is presented using the Euler–Newton approach with screw theory representation. Each rigid link is represented using a screw, a six-dimensional vector with components of angular rotation, and linear translation. The nonlinearity in the system arises from the discontinuous behavior of the strings and the “closed-chain” nature of the mechanism. The behavior of the strings is piece-wise continuous to model their slack, compliant, or tension states.

References

1.
Motro
,
R.
,
2003
,
Tensegrity: Structural Systems for the Future
,
Butterworth-Heinemann
,
Oxford, UK
.
2.
Ingber
,
D. E.
,
1993
, “
Cellular Tensegrity: Defining New Rules of Biological Design that Govern the Cytoskeleton
,”
J. Cell Sci.
,
104
(
3
), pp.
613
627
.
3.
Connelly
,
R.
,
2002
, “Tensegrity Structures: Why Are They Stable?”
Rigidity Theory and Applications. Fundamental Materials Research
,
M. F.
Thorpe
, and
P. M.
Duxbury
eds.,
Springer
,
Boston, MA
, pp.
47
54
.
4.
Skelton
,
R. E.
,
Montuori
,
R.
, and
Pecoraro
,
V.
,
2016
, “
Globally Stable Minimal Mass Compressive Tensegrity Structures
,”
Compos. Struct.
,
141
, pp.
346
354
.
5.
Ikemoto
,
S.
,
Tsukamoto
,
K.
, and
Yoshimitsu
,
Y.
,
2021
, “
Development of a Modular Tensegrity Robot Arm Capable of Continuous Bending
,”
Front. Rob. AI
,
8
, p.
11
.
6.
Ramadoss
,
V.
,
Sagar
,
K.
,
Ikbal
,
M. S.
,
Calles
,
J. H. L.
,
Siddaraboina
,
R.
, and
Zoppi
,
M.
,
2022
, “
Hedra: A Bio-Inspired Modular Tensegrity Robot With Polyhedral Parallel Modules
,”
IEEE 5th International Conference on Soft Robotics (RoboSoft)
,
Edinburgh, UK
,
Apr. 4–8
, pp.
559
564
.
7.
Sabelhaus
,
A. P.
,
van Vuuren
,
L. J.
,
Joshi
,
A.
,
Zhu
,
E.
,
Garnier
,
H. J.
,
Sover
,
K. A.
,
Navarro
,
J.
,
Agogino
,
A. K.
, and
Agogino
,
A. M.
,
2018
,
arXiv:1804.06527 (pre-print)
. https://arxiv.org/abs/1804.06527
8.
Sabelhaus
,
A. P.
,
Ji
,
H.
,
Hylton
,
P.
,
Madaan
,
Y.
,
Yang
,
C.
,
Agogino
,
A. M.
,
Friesen
,
J.
, and
SunSpiral
,
V.
,
2015
, “
Mechanism Design and Simulation of the Ultra Spine: A Tensegrity Robot
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
57120
,
American Society of Mechanical Engineers
, p.
V05AT08A059
.
9.
Zappetti
,
D.
,
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2017
, “
Bio-Inspired Tensegrity Soft Modular Robots
,”
6th International Conference, Living Machines
,
Stanford, CA
,
July 26–28
, Springer, pp.
497
508
.
10.
Fasquelle
,
B.
,
Furet
,
M.
,
Khanna
,
P.
,
Chablat
,
D.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2020
, “
A Bio-Inspired 3-DOF Light-Weight Manipulator With Tensegrity X-joints
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
5054
5060
.
11.
Zappetti
,
D.
,
Arandes
,
R.
,
Ajanic
,
E.
, and
Floreano
,
D.
,
2020
, “
Variable-Stiffness Tensegrity Spine
,”
Smart Mater. Struct.
,
29
(
7
), p.
075013
.
12.
Rhodes
,
T.
,
Gotberg
,
C.
, and
Vikas
,
V.
,
2019
, “
Compact Shape Morphing Tensegrity Robots Capable of Locomotion
,”
Front. Rob. AI
,
6
.
13.
Kobayashi
,
R.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2022
, “
Soft Tensegrity Robot Driven by Thin Artificial Muscles for the Exploration of Unknown Spatial Configurations
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5349
5356
.
14.
Tibert
,
A.
, and
Pellegrino
,
S.
,
2003
, “
Review of Form-Finding Methods for Tensegrity Structures
,”
Int. J. Space Struct.
,
18
(
4
), pp.
209
223
.
15.
Linkwitz
,
K.
, and
Schek
,
H.-J.
,
1971
, “
Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen
,”
Ingenieur-archiv
,
40
(
3
), pp.
145
158
.
16.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
, “Analysis of Tensegrity Dynamics,”
Tensegrity Systems
,
Springer US
,
Boston, MA
.
17.
Goyal
,
R.
, and
Skelton
,
R. E.
,
2019
, “
Tensegrity System Dynamics With Rigid Bars and Massive Strings
,”
Multibody Syst. Dynam.
,
46
(
3
), pp.
203
228
.
18.
Ma
,
S.
,
Chen
,
M.
,
Peng
,
Z.
,
Yuan
,
X.
, and
Skelton
,
R. E.
,
2022
, “
The Equilibrium and Form-Finding of General Tensegrity Systems With Rigid Bodies
,”
Eng. Struct.
,
266
.
19.
Murakami
,
H.
,
2001
, “
Static and Dynamic Analyses of Tensegrity Structures. Part 1. Nonlinear Equations of Motion
,”
Int. J. Solids. Struct.
,
38
(
20
), pp.
3599
3613
.
20.
Sultan
,
C.
, “Modeling, Design, and Control of Tensegrity Structures With Applications,”
Ph.D. dissertation
,
Purdue University
,
West Lafayette, IN
.
21.
Abourachid
,
A.
,
Böhmer
,
C.
,
Wenger
,
P.
,
Chablat
,
D.
,
Chevallereau
,
C.
,
Fasquelle
,
B.
, and
Furet
,
M.
,
2019
, “
Modelling, Design and Control of a Bird Neck Using Tensegrity Mechanisms
.”
22.
Tensegrity Robotics – NTRT – NASA Tensegrity Robotics Toolkit
.”
23.
Weisstein
,
E. W.
,
Snub Disphenoid
.
Wolfram Research, Inc.
24.
Gotberg
,
C.
, and
Vikas
,
V.
,
2022
, “
Synthesis of Tensegrity Primitives Using Polyhedron and Lexicographic Ordering
,”
ASME J. Mech. Rob.
25.
26.
Euler
,
L.
,
1953
, “
Leonhard Euler and the Koenigsberg Bridges
,”
Sci. Am.
,
189
(
1
), pp.
66
72
.
27.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
28.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics: Mechanics, Planning, and Control
, 1st ed.,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.