Abstract

Design optimizations of flexure-based mechanisms take a lot of computation time, in particular when large deformations are involved. In an optimization procedure, statically deformed configurations of many designs have to be obtained, while finding the statically deformed configuration itself requires tens to hundreds of load step iterations. The kinematically started deformation method (KSD-method) (Dwarshuis, K. S., Aarts, R. G. K. M., Ellenbroek, M. H. M., and Brouwer, D. M., 2020, “Kinematically Started Efficient Position Analysis of Deformed Compliant Mechanisms Utilizing Data of Standard Joints,” Mech. Mach. Theory, 152, p. 103911) computes deformed configurations fast by starting the computation from an approximation. This approximation is obtained by allowing the mechanism only to move in the compliant motion-direction, based on kinematic equations, using data of the flexure joints in the mechanism. This is possible as flexure-based mechanisms are typically designed to be kinematically determined in the motion directions. In this paper, the KSD-method is extended such that it can also be applied without joint-data, such that it is not necessary to maintain a database with joint-data. This paper also shows that the method can be used for mechanisms containing joints that allow full spatial motion. Several variants of the KSD-method are presented and evaluated for accuracy and required computation time. One variant, which uses joint-data, is 21 times faster and shows errors in stress and stiffness below 1% compared to a conventional multibody analysis on the same model. Another variant, which does not use joint-data, reduces the computation time by a factor of 14, keeping errors below 1%. The KSD-method is shown to be helpful in design optimizations of complex flexure mechanisms for large range of motion.

References

1.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
CRC Press
,
Boca Raton, FL
.
2.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
3.
Richard
,
M.
, and
Clavel
,
R.
,
2011
, “
Concept of Modular Flexure-Based Mechanisms for Ultra-High Precision Robot Design
,”
Mech. Sci.
,
2
(
1
), pp.
99
107
.
4.
Tolou
,
N.
,
Henneken
,
V. A.
, and
Herder
,
J. L.
,
2010
, “
Statically Balanced Compliant Micro Mechanisms (SB-MEMS): Concepts and Simulation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Aug. 15–18
.
5.
Wan
,
S.
, and
Xu
,
Q.
,
2016
, “
Design and Analysis of a New Compliant XY Micropositioning Stage Based on Roberts Mechanism
,”
Mech. Mach. Theory
,
95
, pp.
125
139
.
6.
Le Chau
,
N.
,
Dang
,
V. A.
,
Le
,
H. G.
, and
Dao
,
T.-P.
,
2017
, “
Robust Parameter Design and Analysis of a Leaf Compliant Joint for Micropositioning Systems
,”
Arab. J. Sci. Eng.
,
42
(
11
), pp.
4811
4823
.
7.
Wu
,
Z.
, and
Xu
,
Q.
,
2018
, “
Survey on Recent Designs of Compliant Micro-/Nano-Positioning Stages
,”
Actuators
,
7
(
1
), p.
5
.
8.
Wiersma
,
D.
,
Boer
,
S.
,
Aarts
,
R. G.
, and
Brouwer
,
D. M.
,
2014
, “
Design and Performance Optimization of Large Stroke Spatial Flexures
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011016
.
9.
Naves
,
M.
,
Brouwer
,
D. M.
, and
Aarts
,
R. G. K. M.
,
2017
, “
Building Block-Based Spatial Topology Synthesis Method for Large-Stroke Flexure Hinges
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041006
.
10.
Naves
,
M.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2019
, “
Large Stroke High Off-Axis Stiffness Three Degree of Freedom Spherical Flexure Joint
,”
Precis. Eng.
,
56
, pp.
422
431
.
11.
Hao
,
G.
,
Yu
,
J.
, and
Li
,
H.
,
2016
, “
A Brief Review on Nonlinear Modeling Methods and Applications of Compliant Mechanisms
,”
Front. Mech. Eng.
,
11
(
2
), pp.
119
128
.
12.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
13.
Bilancia
,
P.
, and
Berselli
,
G.
,
2021
, “
An Overview of Procedures and Tools for Designing Nonstandard Beam-Based Compliant Mechanisms
,”
Comput. Aided Des.
,
134
, p.
103001
.
14.
Bathe
,
K. J.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
961
986
.
15.
Pai
,
P.
, and
Palazotto
,
A.
,
1996
, “
Large-Deformation Analysis of Flexible Beams
,”
Int. J. Solids Struct.
,
33
(
9
), pp.
1335
1353
.
16.
Bisshopp
,
K.
, and
Drucker
,
D.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
,
3
(
3
), pp.
272
275
.
17.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
18.
Cammarata
,
A.
,
Lacagnina
,
M.
, and
Sequenzia
,
G.
,
2019
, “
Alternative Elliptic Integral Solution to the Beam Deflection Equations for the Design of Compliant Mechanisms
,”
Int. J. Interact. Des. Manuf.
,
13
(
2
), pp.
499
505
.
19.
Xu
,
K.
,
Liu
,
H.
, and
Xiao
,
J.
,
2021
, “
Static Deflection Modeling of Combined Flexible Beams Using Elliptic Integral Solution
,”
Int. J. Non-Linear Mech.
,
129
, p.
103637
.
20.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
London
.
21.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
22.
Sen
,
S.
,
2013
, “
Beam Constraint Model: Generalized Nonlinear Closed-form Modeling of Beam Flexures for Flexure Mechanism Design
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
23.
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2017
, “
A General and Efficient Multiple Segment Method for Kinetostatic Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
112
, pp.
205
217
.
24.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
25.
Nijenhuis
,
M.
,
Meijaard
,
J. P.
, and
Brouwer
,
D. M.
,
2020
, “
A Spatial Closed-Form Nonlinear Stiffness Model for Sheet Flexures Based on a Mixed Variational Principle Including Third-Order Effects
,”
Precis. Eng.
,
66
, pp.
429
444
.
26.
Bai
,
R.
,
Chen
,
G.
, and
Awtar
,
S.
,
2021
, “
Closed-Form Solution for Nonlinear Spatial Deflections of Strip Flexures of Large Aspect Ratio Considering Second Order Load-Stiffening
,”
Mech. Mach. Theory
,
161
, p.
104324
.
27.
Chen
,
G.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2018
, “
A General Approach to the Large Deflection Problems of Spatial Flexible Rods Using Principal Axes Decomposition of Compliance Matrices
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031012
.
28.
Bai
,
R.
, and
Chen
,
G.
,
2021
, “
Modeling Large Spatial Deflections of Slender Beams of Rectangular Cross Sections in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011021
.
29.
Chase Jr.
,
R. P.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
A 3-D Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
1
), pp.
142
156
.
30.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
31.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.
32.
Baur
,
U.
,
Benner
,
P.
, and
Feng
,
L.
,
2014
, “
Model Order Reduction for Linear and Nonlinear Systems: A System-Theoretic Perspective
,”
Arch. Comput. Methods
,
21
(
4
), pp.
331
358
.
33.
Degroote
,
J.
,
Vierendeels
,
J.
, and
Willcox
,
K.
,
2010
, “
Interpolation Among Reduced-Order Matrices to Obtain Parameterized Models for Design, Optimization and Probabilistic Analysis
,”
Int. J. Numer. Methods Fluids
,
63
(
2
), pp.
207
230
.
34.
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2014
, “Craig-Bampton Substructuring for Geometrically Nonlinear Subcomponents,”
Dynamics of Coupled Structures
,
M.
Allen
,
R.
Mayes
, and
D.
Rixen
, eds.,
Springer
,
New York
, pp.
167
178
.
35.
Dwarshuis
,
K. S.
,
Aarts
,
R. G. K. M.
,
Ellenbroek
,
M. H. M.
, and
Brouwer
,
D. M.
,
2020
, “
Kinematically Started Efficient Position Analysis of Deformed Compliant Mechanisms Utilizing Data of Standard Joints
,”
Mech. Mach. Theory
,
152
, p.
103911
.
36.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
American Society of Mechanical Engineers
,
New York
.
37.
Haringx
,
J.
,
1949
, “
The Cross-Spring Pivot as a Constructional Element
,”
Flow Turbul. Combust.
,
1
(
1
), p.
313
.
38.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
,
Shusheng
,
B.
, and
Zhiwei
,
Y.
,
2008
, “
Analysis of Rotational Precision for an Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
.
39.
Naves
,
M.
,
Hakvoort
,
W. B. J.
,
Nijenhuis
,
M.
, and
Brouwer
,
D. M.
,
2020
, “
T-Flex: A Large Range of Motion Fully Flexure-Based 6-DOF Hexapod
,”
Euspen’s 20th International Conference & Exhibition
,
Geneva, Switzerland
,
June 8–12
.
40.
Jonker
,
J.
, and
Meijaard
,
J.
,
1990
, “SPACAR—Computer program for dynamic analysis of flexible spatial mechanisms and manipulators,”
Multibody Systems Handbook
,
W.
Schiehlen
, ed.,
Springer
,
New York
, pp.
123
143
.
41.
Hansen
,
N.
,
2006
, “
The CMA Evolution Strategy: A Comparing Review
,”
Towards Evol. Comput.
,
192
, pp.
75
102
.
42.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
,
2006
, “
How to Draw Euler Angles and Utilize Euler Parameters
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
.
You do not currently have access to this content.