Abstract

Mobile robots can replace rescuers in rescue and detection missions in complex and unstructured environments and draw the interest of many researchers. This paper presents a novel six-wheeled mobile robot with a reconfigurable body and self-adaptable obstacle-climbing mechanisms, which can reconfigure itself to three locomotion states to realize the advantages of terrain adaptability, obstacle-crossing ability, and portability. Design criteria and mechanical design of the proposed mobile robot are first presented, based on which the geometry of the robot is modeled and the geometric constraint, static conditions, and motion stability condition for obstacle crossing of the robot are derived and formulated. Numerical simulations are then conducted to verify the geometric passing capability, static passing capability, and motion stability and to find feasible structure parameters of the robot in obstacle crossing. Further, a physical prototype of the proposed mobile robot is developed and integrated with mechatronic systems and remote control. Using the prototype, field experiments are carried out to verify the feasibility of the proposed design and theoretical derivations. The results show that the proposed mobile robot satisfies all the criteria set and is feasible for applications in disastrous rescuing scenarios.

References

1.
Tadokoro
,
S.
,
Takamori
,
T.
,
Tsurutani
,
S.
, and
Osuka
,
K.
,
1997
, “
On Robotic Rescue Facilities for Disastrous Earthquakes—From the Great Hanshin-Awaji (Kobe) Earthquake
,”
J. Rob. Mechatron.
,
9
(
1
), pp.
46
56
.
2.
Casper
,
J.
, and
Murphy
,
R. R.
,
2003
, “
Human-Robot Interactions During the Robot-Assisted Urban Search and Rescue Response at the World Trade Center
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
33
(
3
), pp.
367
385
.
3.
Meghdari
,
A.
,
Pishkenari
,
H. N.
,
Gaskarimahalle
,
A. L.
,
Mahboobi
,
S. H.
, and
Karimi
,
R.
,
2005
, “
A Novel Approach for Optimal Design of a Rover Mechanism
,”
J. Intell. Rob. Syst.
,
44
(
4
), pp.
291
312
.
4.
Nagatani
,
K.
,
Yamasaki
,
A.
,
Yoshida
,
K.
, and
Adachi
,
T.
,
2007
, “
Development and Control Method of Six-Wheel Robot With Rocker Structure
,”
IEEE International Workshop on Safety, Security and Rescue Robotics
,
Rome, Italy
,
Sept. 27–29
, pp.
1
6
.
5.
Zhu
,
Y.
,
Fei
,
Y.
, and
Xu
,
H.
,
2017
, “
Stability Analysis of a Wheel-Track-Leg Hybrid Mobile Robot
,”
J. Intell. Rob. Syst.
,
91
(
2
), pp.
515
528
.
6.
Michaud
,
F.
,
Letourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
, and
Legault
,
M. A.
, et al
,
2005
, “
Multi-modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations
,”
Auton. Robots
,
18
(
2
), pp.
137
156
.
7.
Luo
,
Z.
,
Shang
,
J.
,
Wei
,
G.
, and
Ren
,
L.
,
2018
, “
A Reconfigurable Hybrid Wheel-Track Mobile Robot Based on Watt II Six-Bar Linkage
,”
Mech. Mach. Theory
,
128
(
10
), pp.
16
32
.
8.
Li
,
Y.
,
Li
,
M.
,
Zhu
,
H.
,
Hu
,
E.
,
Tang
,
C.
,
Li
,
P.
, and
You
,
S.
,
2020
, “
Development and Applications of Rescue Robots for Explosion Accidents in Coal Mines
,”
J. Robot. Syst.
,
37
(
3
), pp.
466
489
.
9.
Buchanan
,
R.
,
Wellhausen
,
L.
,
Bjelonic
,
M.
,
Bandyopadhyay
,
T.
, and
Hutter
,
M.
,
2020
, “
Perceptive Whole Body Planning for Multi-Legged Robots in Confined Spaces
,”
J. Field Rob.
,
38
(
3
), pp.
68
84
.
10.
Bruzzone
,
L.
, and
Quaglia
,
G.
,
2012
, “
Review Article: Locomotion Systems for Ground Mobile Robots in Unstructured Environments
,”
Mech. Sci.
,
3
(
2
), pp.
49
62
.
11.
Ning
,
M.
,
Ma
,
Z.
,
Chen
,
H.
,
Cao
,
J.
,
Zhu
,
C.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Design and Analysis for a Multifunctional Rescue Robot With Four-Bar Wheel-Legged Structure
,”
Adv. Mech. Eng.
,
10
(
2
), pp.
1
14
.
12.
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2014
, “
Mantis: Hybrid Leg-Wheel Ground Mobile Robot
,”
Ind. Rob.
,
41
(
1
), pp.
26
36
.
13.
Amiri
,
S.
,
Sharaf
,
O.
,
AlMheiri
,
S.
,
AlRais
,
A.
,
Wali
,
M.
,
Al Shamsi
,
Z.
,
Al Qasim
,
I.
, et al
,
2017
, “
Emirates Mars Mission (EMM) 2020 Overview
,”
Presented at the EGU General Assembly Conference Abstracts
,
Vienna, Austria
,
Apr. 23–28
, pp. P34B-08.
14.
Zhang
,
Y.
,
Xiao
,
J.
,
Zhang
,
X.
,
Liu
,
D.
, and
Zou
,
H.
,
2014
, “
Design and Implementation of Chang'E-3 Rover Location System
,”
Sci. Sin. Technol.
,
44
(
5
), pp.
483
491
.
15.
Lindemann
,
R. A.
, and
Voorhees
,
C. J.
,
2006
, “
Mars Exploration Rover Mobility Assembly Design, Test and Performance
,”
2005 IEEE International Conference on Systems, Man and Cybernetics
,
Waikoloa, HI
,
Oct. 12
, Vol.
1
, pp.
450
455
.
16.
Squyres
,
S. W.
,
Arvidson
,
R. E.
,
Bell
,
J. F.
,
Brückner
,
J.
,
Cabrol
,
N. A.
,
Calvin
,
W.
,
Carr
,
M. H.
, et al
,
2004
, “
The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars
,”
Science
,
305
(
5685
), pp.
794
799
.
17.
Kim
,
D.
,
Hong
,
H.
,
Kim
,
H. S.
, and
Kim
,
J.
,
2012
, “
Optimal Design and Kinetic Analysis of a Stair-Climbing Mobile Robot With Rocker-Bogie Mechanism
,”
Mech. Mach. Theory
,
50
(
none
), pp.
90
108
.
18.
Kozma
,
R.
,
Hunstberger
,
T.
,
Aghazarian
,
H.
, and
Freeman
,
W. J.
,
2007
, “
Implementing Intentional Robotics Principles Using SSR2 K Platform
,”
IEEE/RSJ International Conference on Intelligent Robots & Systems
,
San Diego, CA
,
Dec. 10
, pp.
2262
2267
.
19.
Kozma
,
R.
,
Huntsberger
,
T.
,
Aghazarian
,
H.
,
Tunstel
,
E.
,
Ilin
,
R.
, and
Freeman
,
W.
,
2008
, “
Intentional Control for Planetary Rover SRR
,”
Adv. Rob.
,
22
(
12
), pp.
1309
1327
.
20.
Aoki
,
T.
,
Murayama
,
Y.
, and
Hirose
,
S.
,
2013
, “
Development of a Transformable Three-Wheeled Lunar Rover: Tri-Star IV
,”
J. Field Rob.
,
31
(
1
), pp.
206
223
.
21.
Wettergreen
,
D.
,
Moreland
,
S.
,
Skonieczny
,
K.
,
Jonak
,
D.
,
Kohanbash
,
D.
, and
Teza
,
J.
,
2010
, “
Design and Field Experimentation of a Prototype Lunar Prospector
,”
Int. J. Rob. Res.
,
29
(
12
), pp.
1550
1564
.
22.
Jiang
,
H.
,
Xu
,
G.
,
Zeng
,
W.
, and
Gao
,
F.
,
2019
, “
Design and Kinematic Modeling of a Passively-Actively Transformable Mobile Robot
,”
Mech. Mach. Theory
,
142
(
2
), p.
103591
.
23.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2000
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.
24.
Ning
,
M.
,
Xue
,
B.
,
Ma
,
Z.
,
Zhu
,
C.
,
Liu
,
Z.
,
Zhang
,
C.
,
Wang
,
Y.
, et al
,
2017
, “
Design, Analysis, and Experiment for Rescue Robot With Wheel-Legged Structure
,”
Math. Probl. Eng.
,
2017
(
5
), pp.
1
16
.
25.
Lacagnina
,
M.
,
Muscato
,
G.
, and
Sinatra
,
R.
,
2003
, “
Kinematics, Dynamics and Control of a Hybrid Robot Wheeleg
,”
Rob. Auton. Syst.
,
45
(
3–4
), pp.
161
180
.
26.
Lu
,
D.
,
Dong
,
E.
,
Liu
,
C.
,
Min
,
X.
, and
Jie
,
Y.
,
2013
, “
Design and Development of a Leg-Wheel Hybrid Robot “HyTRo-I”
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 11
, pp.
6031
6036
.
27.
Lu
,
D.
,
Dong
,
E.
,
Liu
,
C.
,
Xu
,
M.
, and
Yang
,
J.
,
2016
, “
Generation and Analyses of the Reinforced Wave Gait for a Mammal-Like Quadruped Robot
,”
J. Intell. Rob. Syst.
,
82
(
1
), pp.
51
68
.
28.
Krovi
,
V.
, and
Kumar
,
V.
,
1999
, “
Modeling and Control of a Hybrid Locomotion System
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
448
455
.
29.
Chang
,
Q.
,
Liu
,
X.
,
Xu
,
W.
,
Lei
,
Y.
, and
Yang
,
B.
,
2016
, “
The Design and Experiments of a Small Wheel-Legged Mobile Robot System With Two Robotic Arms
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
2590
2595
.
30.
Grand
,
C.
,
Benamar
,
F.
, and
Plumet
,
F.
,
2010
, “
Motion Kinematics Analysis of Wheeled-Legged Rover Over 3D Surface With Posture Adaptation
,”
Mech. Mach. Theory
,
45
(
3
), pp.
477
495
.
31.
Lauria
,
M.
,
Piguet
,
Y.
, and
Siegwart
,
R.
,
2002
, “
Octopus—An Autonomous Wheeled Climbing Robot
,”
Presented at the Fifth International Conference on Climbing and Walking Robots (CLAWAR)
,
Paris, France
,
Sept. 25–27
, pp.
25
27
.
32.
Wilcox
,
B. H.
,
2011
, “
ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 5–12
, pp.
1
8
.
33.
Sunspiral
,
V.
,
Wheeler
,
D. W.
,
Chavez-Clemente
,
D.
, and
Mittman
,
D.
,
2012
, “
Development and Field Testing of the FootFall Planning System for the ATHLETE Robots
,”
J. Field Rob.
,
29
(
3
), pp.
483
505
.
34.
Cordes
,
F.
,
Dettmann
,
A.
, and
Kirchner
,
F.
,
2011
, “
Locomotion Modes for a Hybrid Wheeled-Leg Planetary Rover
,”
Presented at the 2011 IEEE International Conference on Robotics and Biomimetics
,
Karon Beach, Thailand
,
Dec. 7–11
, pp.
2586
2592
.
35.
Roehr
,
T. M.
,
Cordes
,
F.
, and
Kirchner
,
F.
,
2013
, “
Reconfigurable Integrated Multirobot Exploration System (RIMRES): Heterogeneous Modular Reconfigurable Robots for Space Exploration
,”
J. Field Rob.
,
31
(
1
), pp.
3
34
.
36.
Halme
,
A.
,
Leppnen
,
I.
, and
Salmi
,
S.
,
1999
, “
Development of WorkPartner-Robot—Design of Actuating and Motion Control System
,”
International Conference on Climbing and Walking Robots — CLAWAR-99
,
Portsmouth, UK
,
Sept. 12–14
, Professional Engineering Publishing, pp.
657
665
.
37.
Seong-Ho
,
Y.
,
Jaehyun
,
P.
,
Jiwon
,
S.
, and
Yong-Jae
,
K.
,
2021
, “
Development of an Agile Omnidirectional Mobile Robot With GRF Compensated Wheel-Leg Mechanisms for Human Environments
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
8301
8308
.
38.
Alamdari
,
A.
,
Herin
,
R.
, and
Krovi
,
V. N.
,
2013
, “
Quantitative Kinematic Performance Comparison Of Reconfigurable Leg-Wheeled Vehicles
,”
Nature-Inspired Mobile Robotics
, pp.
585
592
.
39.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mech. Rob. Syst.
,
3
(
1
), pp.
15
31
.
40.
Chen
,
S. C.
,
Ke
,
J. H.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2011
, “
Trajectory Planning for Stair Climbing in the Leg-Wheel Hybrid Mobile Robot Quattroped
,”
Proceedings of the IEEE International Conference on Robotics & Automation
,
Shanghai, China
,
May 9–13
, pp.
1229
1234
.
41.
Chen
,
S.-C.
,
Huang
,
K.-J.
,
Chen
,
W.-H.
,
Shen
,
S.-Y.
,
Li
,
C.-H.
, and
Lin
,
P.-C.
,
2013
, “
Quattroped: A Leg–Wheel Transformable Robot
,”
EEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
730
742
.
42.
Mertyüz
,
R.
,
Tanyldz
,
A. K.
,
Taar
,
B.
,
Tatar
,
A. B.
, and
Yakut
,
O.
,
2020
, “
FUHAR: A Transformable Wheel-Legged Hybrid Mobile Robot
,”
Rob. Auton. Syst.
,
133
, p.
103627
.
43.
Chen
,
W. H.
,
Lin
,
H. S.
,
Lin
,
Y. M.
, and
Lin
,
P. C.
,
2017
, “
TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and Fast Behavioral Transitions
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1025
1040
.
44.
Zheng
,
C.
, and
Lee
,
K.
,
2019
, “
WheeLeR: Wheel-Leg Reconfigurable Mechanism With Passive Gears for Mobile Robot Applications
,”
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
9292
9298
.
45.
Kim
,
Y.
,
Lee
,
L.
,
Lee
,
S.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T. W.
,
2020
, “
STEP: A New Mobile Platform With 2-DOF Transformable Wheels for Service Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
1859
1868
.
46.
Tadakuma
,
K.
,
Tadakuma
,
R.
,
Maruyama
,
A.
,
Rohmer
,
E.
, and
Kaneko
,
M.
,
2010
, “
Mechanical Design of the Wheel-Leg Hybrid Mobile Robot to Realize a Large Wheel Diameter
,”
IEEE/RSJ International Conference on Intelligent Robots & Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
3358
3365
.
47.
Wang
,
D.
,
2016
,
Design and Research of Mobile Robot With Transformable Wheels
,
Beijing Jiaotong University
,
Beijing, China
.
48.
Herbert
,
S. D.
,
Drenner
,
A.
, and
Papanikolopoulos
,
N.
,
2008
, “
Loper: A Quadruped-Hybrid Stair Climbing Robot
,”
IEEE International Conference on Robotics & Automation
,
Pasadena, CA
,
May 19–23
, pp.
799
804
.
49.
Altendorfer
,
R.
,
Moore
,
N.
,
Komsuoglu
,
H.
,
Buehler
,
M.
,
Brown
,
H. B.
, Jr.
,
McMordie
,
D.
,
Saranli
,
U.
,
Full
,
R.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Biologically Inspired Hexapod Runner
,”
Auton. Robots
,
11
(
3
), pp.
207
213
.
50.
Waldron
,
K. J.
,
Eich
,
M.
,
Grimminger
,
F.
, and
Kirchner
,
F.
,
2009
, “
Adaptive Compliance Control of a Multi-legged Stair-Climbing Robot Based on Proprioceptive Data
,”
Ind. Rob.
,
36
(
4
), pp.
331
339
.
51.
Quaglia
,
G.
, and
Nisi
,
M.
,
2015
, “
Design and Construction of a New Version of the Epi.q UGV for Monitoring and Surveillance Tasks
,”
ASME 2015 International Mechanical Engineering Congress and Exposition Volume 4A: Dynamics, Vibration, and Control
,
Houston, TX
,
Nov. 13–19
.
52.
Quaglia
,
G.
,
Bruzzone
,
L.
,
Oderio
,
R.
, and
Razzoli
,
R. P.
,
2011
, “
Epi.q Mobile Robots Family
,”
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 7: Dynamic Systems and Control; Mechatronics and Intelligent Machines, Parts A and B
,,
Denver, CO
,
Nov. 11–17
, pp.
1165
1172
.
53.
Oderio
,
R.
, and
Quaglia
,
G.
,
2009
, “
Design of the Small Mobile Robot Epi.q-2
,”
Proceedings of the XIX Congress AIMETA—Italian Association for Theoretical and Applied Mechanics
,
Ancona, Italy
,
Sept. 14–17
.
54.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
J. Mech. Rob.
,
5
(
2
), p.
021005
.
55.
Liu
,
C.
,
2018
,
Research on Obstacle-Performance of Articulated-Track Inspection Robot Under Complex Environment
,
University of South China
,
Guangzhou, China
.
56.
Garcia
,
E.
,
Estremera
,
J.
, and
de Santos
,
P. G.
,
2002
, “
A Comparative Study of Stability Margins for Walking Machines
,”
Robotica
,
20
(
Part 6
), pp.
595
606
.
57.
Quaglia
,
G.
,
Bruzzone
,
L.
,
Bozzini
,
G.
,
Oderio
,
R.
, and
Razzoli
,
R. P.
,
2011
, “
Epi.q-TG: Mobile Robot for Surveillance
,”
Ind. Rob.
,
38
(
3
), pp.
282
291
.
58.
Seo
,
B. H.
,
Kim
,
H. G.
,
Kim
,
M. H.
,
Jeong
,
K.
, and
Seo
,
T. W.
,
2013
, “
FlipBot: A New Field Robotic Platform for Fast Stair Climbing
,”
Int. J. Precis. Eng. Manuf.
,
14
(
11
), pp.
1909
1914
.
59.
Grand
,
C.
,
Benamar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2004
, “
Decoupled Control of Posture and Trajectory of the Hybrid Wheel-Legged Robot Hylos
,”
IEEE International Conference on Robotics & Automation
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
5111
5116
.
You do not currently have access to this content.