Abstract

Thanks to their absence of play, absence of contact friction and possible monolithic fabrication, flexure pivots offer advantages over traditional bearings in small-scale, high accuracy applications and environments where lubrication and wear debris are proscribed. However, they typically present a parasitic center shift that deteriorates their rotational guidance accuracy. Existing solutions addressing this issue have the drawbacks of reducing angular stroke, prohibiting planar design, or introducing overconstraints or underconstraints. This article presents a new triple crossed flexure pivot we have named TRIVOT whose kinematics theoretically nullify its parasitic center shift without overconstraints nor internal mobility. In the physical implementation, the center shift is non-zero but we show using the finite element method (FEM) that it is reduced by one order of magnitude in comparison to the widely used crossed flexure pivot (CFP). This allows to choose a crossing ratio of the flexures that either maximizes the angular stroke limit for given flexures or results in a compact planar design with the possibility of a remote center of compliance (RCC). Based on a pseudo-rigid-body model (PRBM), formulas for the rotational stiffness and angular stroke limit of the TRIVOT are derived, which are then validated by FEM. Finally, we show that a high support stiffness can be achieved based on a preliminary study for a mechanical watch time base application. We expect this new pivot to become a competitive alternative to the standard CFP for applications where high accuracy and compactness are required.

References

1.
Helmer
,
P.
,
2006
, “
Conception Systématique de Structures Cinématiques Orthogonales Pour La Microrobotique
,” Ph.D. thesis,
EPFL
,
Lausanne
.
2.
Richard
,
M.
, and
Clavel
,
R.
,
2010
, “
A New Concept of Modular Kinematics to Design Ultra-High Precision Flexure-Based Robots
,”
ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics)
,
Munich, Germany
,
June 7–9
, pp.
1
8
.
3.
Jayanth
,
G. R.
, and
Menq
,
C. H.
,
2014
, “
Design and Modeling of an Active Five-Axis Compliant Micromanipulator
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041014
.
4.
Yu
,
J.
,
Xie
,
Y.
,
Li
,
Z.
, and
Hao
,
G.
,
2015
, “
Design and Experimental Testing of an Improved Large-Range Decoupled XY Compliant Parallel Micromanipulator1
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044503
.
5.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,”
ASME J. Mech. Des.
,
139
(
6
), p.
060801
.
6.
Seelig
,
F. A.
,
1968
, “
Flexural Pivots for Space Applications
,”
Proceedings of the 3rd Aerospace Mechanisms Symposium
,
California Institute of Technology, May 23–24, pp. 9–18
.
7.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
Proceedings of the 10th ESMATS
,
San Sebastian, Spain
,
Sept. 25
, pp.
1
4
.
8.
Huo
,
T.
,
Yu
,
J.
, and
Zhao
,
H.
,
2020
, “
Design of a Kinematic Flexure Mount for Precision Instruments Based on Stiffness Characteristics of Flexural Pivot
,”
Mech. Mach. Theory
,
150
, p.
103868
.
9.
Zanaty
,
M.
,
Fussinger
,
T.
,
Rogg
,
A.
,
Lovera
,
A.
,
Lambelet
,
D.
,
Vardi
,
I.
,
Wolfensberger
,
T. J.
,
Baur
,
C.
, and
Henein
,
S.
,
2019
, “
Programmable Multistable Mechanisms for Safe Surgical Puncturing
,”
J. Med. Dev.
,
13
(
2
), p.
021002
.
10.
Fifanski
,
S. K.
,
2020
, “
Flexure-Based Mecano-Optical Multi-Degree-of-Freedom Transducers Dedicated to Medical Force Sensing Instruments
.” https://infoscience.epfl.ch/record/278197
11.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
12.
Robuschi
,
N.
,
Braghin
,
F.
,
Corigliano
,
A.
,
Ghisi
,
A.
, and
Tasora
,
A.
,
2017
, “
On the Dynamics of a High Frequency Oscillator for Mechanical Watches
,”
Mech. Mach. Theory
,
117
, pp.
276
293
.
13.
Thalmann
,
E.
,
2020
, “
Flexure Pivot Oscillators for Mechanical Watches
,” Ph.D. thesis,
EPFL
,
Lausanne
.
14.
Schneegans
,
H.
,
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Shaking Force Balancing of a 2-DOF Isotropic Horological Oscillator
,”
Precis. Eng.
,
72
, pp.
502
520
.
15.
Wittrick
,
W.
,
1948
, “
The Theory of Symmetrical Crossed Flexure Pivots
,”
Aust. J. Sci. Res. A Phys. Sci.
,
1
, p.
121
.
16.
Haringx
,
J. A.
,
1949
, “
The Cross-Spring Pivot as a Constructional Element
,”
Flow Turbulence Combust.
,
1
(
1
), p.
313
.
17.
Wittrick
,
W.
,
1951
, “
The Properties of Crossed Flexure Pivots, and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
2
, pp.
272
292
.
18.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Yu
,
Z.
,
2008
, “
Analysis of Rotational Precision for an Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
.
19.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
20.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Stiffness and Stress Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
3
), pp.
378
391
.
21.
Marković
,
K.
, and
Zelenika
,
S.
,
2015
, “
Characterization of Cross-Spring Pivots for Micropositioning Applications
,”
Barcelona, Spain
,
May 21
,
SPIE Microtechnologies
, p.
951727
.
22.
Xu
,
Q.
,
2013
, “
Design and Implementation of a Novel Rotary Micropositioning System Driven by Linear Voice Coil Motor
,”
Rev. Sci. Instrum.
,
84
(
5
), p.
055001
.
23.
Henein
,
S.
,
2012
, “
Short Communication: Flexure Delicacies
,”
Mech. Sci.
,
3
(
1
), pp.
1
4
.
24.
Cosandier
,
F.
,
Henein
,
S.
,
Richard
,
M.
, and
Rubbert
,
L.
,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
,
Lausanne
.
25.
Kahrobaiyan
,
M. H.
,
Thalmann
,
E.
,
Rubbert
,
L.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Gravity-Insensitive Flexure Pivot Oscillators
,”
ASME J. Mech. Des.
,
140
(
7
), p.
075002
.
26.
Kahrobaiyan
,
M. H.
,
Thalmann
,
E.
, and
Henein
,
S.
,
2020
, “
Flexure Pivot Oscillator Insensitive to Gravity
,”
Jan
, Patent Number WO2020016131.
27.
Thalmann
,
E.
,
Kahrobaiyan
,
M. H.
,
Vardi
,
I.
, and
Henein
,
S.
,
2020
, “
Flexure Pivot Oscillator With Intrinsically Tuned Isochronism
,”
ASME J. Mech. Des.
,
142
(
7
), p.
075001
.
28.
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Optical Measurement Method for Mechanical Time Base Characterization
,”
Proceedings of the 21st International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2021
,
Virtual, Online
,
June 7–10
, pp.
469
472
.
29.
Liu
,
L.
,
Bi
,
S.
,
Yang
,
Q.
, and
Wang
,
Y.
,
2014
, “
Design and Experiment of Generalized Triple-Cross-Spring Flexure Pivots Applied to the Ultra-Precision Instruments
,”
Rev. Sci. Instrum.
,
85
(
10
), p.
105102
.
30.
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Design of a Flexure Rotational Time Base With Varying Inertia
,”
ASME J. Mech. Des.
,
143
(
11
), p.
115001
.
31.
Ciblak
,
N.
, and
Lipkin
,
H.
,
2003
, “
Design and Analysis of Remote Center of Compliance Structures
,”
J. Robot. Syst.
,
20
(
8
), pp.
415
427
.
32.
Lai
,
L.-J.
, and
Zhu
,
Z.-N.
,
2016
, “
Modeling and Analysis of a Compliance Model and Rotational Precision for a Class of Remote Center Compliance Mechanisms
,”
Appl. Sci.
,
6
(
12
), p.
388
.
33.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Hu
,
Y.
,
2009
, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Rob.
,
1
(2), p.
021005
.
34.
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Design of a Triple Crossed Flexure Pivot With Minimized Parasitic Shift
,”
Proceedings of the ASME 2021 IDETC-CIE Conference
,
ASME, Virtual, Online, Aug. 17–19, p. V08AT08A003.
http://dx.doi.org/ 10.1115/DETC2021-67948
35.
Grübler
,
M.
,
1917
,
Getriebelehre: Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
,
Springer-Verlag
,
Berlin
.
36.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
37.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
38.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2010
, “
An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,”
Precis. Eng.
,
34
(
3
), pp.
634
639
.
39.
Henein
,
S.
,
2000
, “
Conception Des Structures Articulées à Guidages Flexibles De Haute Précision
,” Ph.D. thesis,
EPFL
,
Lausanne
.
40.
ANSYS
,
2018
,
ANSYS® Workbench, Release 19.2, ANSYS Workbench User’s Guide
, ANSYS, Inc., Canonsburg, PA.
41.
Henein
,
S.
,
Barrot
,
F.
,
Jeanneret
,
S.
,
Fournier
,
R.
,
Giriens
,
L.
,
Gumy
,
M.
,
Droz
,
S.
, and
Toimil
,
M.
,
2011
, “
Silicon Flexures for the Sugar-Cube Delta Robot
,”
Proceedings of the 11th Euspen International Conference
,
Como, Italy
,
May 23–26
, p.
4
.
42.
Bellouard
,
Y.
,
2011
, “
On the Bending Strength of Fused Silica Flexures Fabricated by Ultrafast Lasers
,”
Opt. Mater. Exp.
,
1
(
5
), pp.
816
831
.
43.
Kiener
,
L.
,
Saudan
,
H.
,
Cosandier
,
F.
,
Perruchoud
,
G.
, and
Spanoudakis
,
P.
,
2019
, “
Innovative Concept of Compliant Mechanisms Made by Additive Manufacturing
,”
9th EASN International Conference on Innovationin Aviation & Space
,
Athens, Greece
,
Sept. 3–6
, p. 07002.
44.
Wiersma
,
D. H.
,
Boer
,
S. E.
,
Aarts
,
R.
, and
Brouwer
,
D. M.
,
2012
, “
Large Stroke Performance Optimization of Spatial Flexure Hinges
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 45059
,
Chicago, IL
,
Aug. 12–15
,
American Society of Mechanical Engineers
, pp.
115
124
.
45.
Gunnink
,
K.
,
Aarts
,
R.
, and
Brouwer
,
D. M.
,
2013
, “
Performance Optimization of Large Stroke Flexure Hinges for High Stiffness and Eigenfrequency
,”
Proceedings of the 28th Annual Meeting of theAmerican Society for Precision Engineering (ASPE)
,
Saint Paul, MN
,
Oct. 20–25
, ASPE, pp.
1
6
.
You do not currently have access to this content.