Abstract

Origami techniques, as folding and unfolding, can be utilized in shrinkable structures. Especially when the crease pattern is rigid foldable, it can be treated as a mechanical linkage of rigid panels connected by hinges. Since rigid foldable crease patterns have the strong geometrical constraint of the facets not being able to stretch or bend, it is difficult to design new crease patterns, and variations of existing patterns are limited. However, it is known that there are cases where crease patterns can be made rigid foldable by adding some slits. This paper proposes a mechanical linkage that folds into a similar flat shape by adding slits. A method is presented of generating rigid foldable crease patterns in arbitrary polygons that fold smaller, and it is confirmed that structures that have a mechanism for shrinking can be generated from these crease patterns using rigid thick panels and hinges.

References

1.
Miura
,
K.
, and
Natori
,
M.
,
1985
, “
2-d Array Experiment on Board a Space Flyer Unit
,”
Space Solar Power Rev.
,
5
(
4
), pp.
345
356
.
2.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
40
), pp.
12321
12326
.
3.
Seymour
,
K.
,
Burrow
,
D.
,
Avila
,
A.
,
Bateman
,
T.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Origami-Based Deployable Ballistic Barrier
,”
Origami 7
,
R. J.
Lang
,
N.
Boakes
,
M.
Bolitho
,
C.
Budd
,
Y.
Chen
,
M.
Frecker
,
S.
Guest
,
T. C.
Hull
,
Y.
Klett
,
J.
Mitani
,
J.
Pardo
,
G.
Paulino
,
M.
Schenk
,
T.
Tachi
,
R.
Uehara
,
P.
Wang-Iverson
, and
Z.
You
, eds.,
Brigham Young University
,
Provo, UT
, vol. 3, pp.
763
777
.
4.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Qais
,
K. F.
,
2015
, “
Scaling Any Surface Down to Any Fraction
,”
Origami 6
,
K.
Miura
,
T.
Kawasaki
,
T.
Tachi
,
R.
Uehara
,
R. J.
Lang
, and
P.
Wang-Iverson
, eds., Vol.
1
, pp.
201
208
.
5.
Lang
,
R. J.
,
2015
, “
Spiderwebs, Tilings, and Flagstone Tessellations
,”
Origami 6
,
K.
Miura
,
T.
Kawasaki
,
T.
Tachi
,
R.
Uehara
,
R. J.
Lang
, and
P.
Wang-Iverson
, eds., Vol.
1
, pp.
189
200
.
6.
Choi
,
G. P.
,
Dudte
,
L. H.
, and
Mahadevan
,
L.
,
2019
, “
Programming Shape Using Kirigami Tessellations
,”
Nat. Mater.
,
18
(
9
), pp.
999
1004
.
7.
Jiang
,
C.
,
Rist
,
F.
,
Pottmann
,
H.
, and
Wallner
,
J.
,
2020
, “
Freeform Quad-Based Kirigami
,”
ACM Trans. Graph.
,
39
(
6
), pp.
1
11
.
8.
Warisaya
,
K.
,
Hamanaka
,
H.
,
Tokolo
,
A.
, and
Tachi
,
T.
,
2021
, “
Auxetic Structures Based on Rhombic Tiling
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, American Society of Mechanical Engineers, Vol. 85451, p. V08BT08A031.
9.
Abel
,
Z.
,
Connelly
,
R.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hull
,
T. C.
,
Lubiw
,
A.
, and
Tachi
,
T.
,
2015
, “
Rigid Flattening of Polyhedra With Slits
,”
Origami 6
,
K.
Miura
,
T.
Kawasaki
,
T.
Tachi
,
R.
Uehara
,
R. J.
Lang
, and
P.
Wang-Iverson
, eds., Vol.
1
, pp.
109
117
.
10.
Yamamoto
,
Y.
, and
Mitani
,
J.
,
2021
, “
Proposal of a Rigidly Foldable and Uniformly Deployable Regular Polygon
,”
Sci. Origami
,
8
(
1
), p.
025372
.
11.
Tarini
,
M.
,
Hormann
,
K.
,
Cignoni
,
P.
, and
Montani
,
C.
,
2004
, “
Polycube-Maps
,”
ACM Trans. Graph.
,
23
(
3
), pp.
853
860
.
12.
Connelly
,
R.
,
Sabitov
,
I.
, and
Walz
,
A.
,
1997
, “
The Bellows Conjecture
,”
Beitr. Algebra Geom.
,
38
(
1
), pp.
1
10
.
13.
Erten
,
H.
, and
Üngör
,
A.
,
2009
, “
Computing Triangulations Without Small and Large Angles
,”
2009 Sixth International Symposium on Voronoi Diagrams
,
Copenhagen, Denmark
,
June 23–26
,
IEEE
, pp.
192
201
.
14.
Mitani
,
J.
,
2007
, “
Counting the Number of Unique Configurations of Flat Folded Origami Reconstructed From a Crease Pattern
,”
J. Graph. Sci. Japan
,
41
(
1
), pp.
27
33
(in Japanese).
15.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
3
), pp.
173
179
.
16.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
.” Vol.
1
, pp.
229
237
.
17.
Kasahara
,
K.
, and
Takahama
,
T.
,
1987
, Origami for the Connoisseur, Tokyo, Japan.
18.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congr. Numer.
,
100
,
215
224
.
19.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
20.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
You do not currently have access to this content.