Abstract

An analytical hydrodynamics model for a piezoelectric micro-robotic fish with double caudal fins is presented in this paper. The relation between displacement of the piezoelectric actuator and oscillating angle of the caudal fin is established based on the analysis of the flexible four-bar linkage transmission. The hydrodynamics of caudal fins are described by airfoil and blade element theories. Furthermore, the dynamics and kinetics of the whole micro-robotic fish are analyzed and validated by experiments.

References

1.
Raj
,
A.
, and
Thakur
,
A.
,
2014
, “
Fish-Inspired Robots: Design, Sensing, Actuation, and Autonomy—A Review of Research
,”
Bioinspiration Biomimetics
,
11
(
3
), p.
031001
.
2.
Scaradozzi
,
D.
,
Palmieri
,
G.
,
Costa
,
D.
, and
Pinelli
,
A.
,
2017
, “
BCF Swimming Locomotion for Autonomous Underwater Robots: a Review and a Novel Solution to Improve Control and Efficiency
,”
Ocean Eng.
,
130
, pp.
437
453
.
3.
Wang
,
Y. W.
,
Tan
,
J. B.
, and
Zhao
,
D. B.
,
2015
, “
Design and Experiment on a Biomimetic Robotic Fish Inspired by Freshwater Stingray
,”
J. Bionic. Eng.
,
12
(
2
), pp.
204
216
.
4.
Triantafyllou
,
M. S.
,
Winey
,
N.
,
Trakht
,
Y.
,
Elhassid
,
R.
, and
Yoerger
,
D.
,
2019
, “
Biomimetic Design of Dorsal Fins for AUVs to Enhance Maneuverability
,”
Bioinspiration Biomimetics
,
15
(
3
), p.
035003
.
5.
Liu
,
G. J.
,
Liu
,
S. K.
,
Xie
,
Y. C.
,
Leng
,
D. X.
, and
Li
,
G. H.
,
2020
, “
The Analysis of Biomimetic Caudal Fin Propulsion Mechanism with CFD
,”
Appl. Bionics. Biomech.
,
2020
, p.
7839049
.
6.
Lamas
,
M. I.
, and
Rodriguez
,
C. G.
,
2020
, “
Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations
,”
J. Mar. Sci. Eng.
,
8
(
7
), p.
479
.
7.
Salazar
,
R.
,
Campos
,
A.
,
Fuentes
,
V.
, and
Abdelkefi
,
A.
,
2019
, “
A Review on the Modeling, Materials, and Actuators of Aquatic Unmanned Vehicles
,”
Ocean Eng.
,
172
, pp.
257
285
.
8.
Arastehfar
,
S.
,
Chew
,
C. M.
,
Jalalian
,
A.
,
Gunawan
,
G.
, and
Yeo
,
K. S.
,
2019
, “
A Relationship Between Sweep Angle of Flapping Pectoral Fins and Thrust Generation
,”
J. Mech. Rob.
,
11
(
1
), p.
011014
.
9.
Zhang
,
F. T.
,
Zhang
,
F. M.
, and
Tan
,
X. B.
,
2014
, “
Tail-Enabled Spiraling Maneuver for Gliding Robotic Fish
,”
ASME J. Dyn. Syst. Meas. Contr.
,
136
(
4
), p.
041028
.
10.
Costa
,
D.
,
Palmieri
,
G.
,
Scaradozzi
,
D.
, and
Callegari
,
M.
,
2021
, “
Experimental Validation of a Bio-Inspired Thruster
,”
ASME J. Dyn. Syst. Meas. Contr.
,
143
(
8
), p.
081004
.
11.
Wang
,
J. X.
,
McKinley
,
P. K.
, and
Tan
,
X. B.
,
2015
, “
Dynamic Modeling of Robotic Fish With a Base-Actuated Flexible Tail
,”
ASME J. Dyn. Syst. Meas. Contr.
,
137
(
1
), p.
011004
.
12.
Castano
,
M. L.
, and
Tan
,
X. B.
,
2019
, “
Model Predictive Control-Based Path-Following for Tail-Actuated Robotic Fish
,”
ASME J. Dyn. Syst. Meas. Contr.
,
141
(
7
), p.
071012
.
13.
Matta
,
A.
,
Pendar
,
H.
,
Battaglia
,
F.
, and
Bayandor
,
J.
,
2020
, “
Impact of Caudal Fin Shape on Thrust Production of a Thunniform Swimmer
,”
J. Bionic. Eng.
,
17
(
2
), pp.
254
269
.
14.
Ijspeert
,
A. J.
,
2014
, “
Biorobotics: Using Robots to Emulate and Investigate Agile Locomotion
,”
Science
,
346
(
6206
), pp.
196
203
.
15.
Ijspeert
,
A. J.
,
Crespi
,
A.
,
Ryczko
,
D.
, and
Cabelguen
,
J. M.
,
2007
, “
From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model
,”
Science
,
315
(
5817
), pp.
1416
1420
.
16.
Ming
,
A. G.
,
Park
,
S.
,
Nagata
,
Y.
, and
Shimojo
,
M.
,
2009
, “
Development of Underwater Robots Using Piezoelectric Fiber Composite
,”
2009 IEEE International Conference On Robotics And Automation
,
ICRA
,
Kobe, Japan
,
May 12–17
, pp.
3435
3440
.
17.
Zhu
,
J.
,
White
,
C.
,
Wainwright
,
D. K.
,
Di Santo
,
V.
,
Lauder
,
G. V.
, and
Bart-Smith
,
H.
,
2019
, “
Tuna Robotics: a High-Frequency Experimental Platform Exploring the Performance Space of Swimming Fishes
,”
Sci. Rob.
,
4
(
34
), p.
eaax4615
.
18.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators
,”
Soft Rob.
,
1
(
1
), pp.
75
87
.
19.
Wang
,
Z. L.
,
Hang
,
G. R.
,
Li
,
J.
,
Wang
,
Y. W.
, and
Xiao
,
K.
,
2008
, “
A Micro-Robot Fish with Embedded SMA Wire Actuated Flexible Biomimetic Fin
,”
Sens. Actuators, A
,
144
(
2
), pp.
354
360
.
20.
Berlinger
,
F.
,
Duduta
,
M.
,
Gloria
,
H.
,
Clarke
,
D.
,
Nagpal
,
R.
, and
Wood
,
R. J.
,
2018
, “
A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles
,”
2018 IEEE International Conference On Robotics And Automation
,
ICRA
,
Brisbane, Australia
,
May 21–25
, pp.
3429
3435
.
21.
Chen
,
Z.
,
Stephan
,
S.
, and
Tan
,
X. B.
,
2010
, “
Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer–Metal Composite Caudal Fin
,”
IEEE ASME Trans. Mechatron.
,
15
(
3
), pp.
448
459
.
22.
Guo
,
S. X.
,
Fukuda
,
T.
, and
Asaka
,
K.
,
2003
, “
A New Type of Fish-Like Underwater Microrobot
,”
IEEE ASME Trans. Mechatron.
,
8
(
1
), pp.
136
141
.
23.
Yan
,
Q.
,
Han
,
Z.
,
Zhang
,
S. W.
, and
Yang
,
J.
,
2008
, “
Parametric Research of Experiments on a Carangiform Robotic Fish
,”
J. Bionic Eng.
,
5
(
2
), pp.
95
101
.
24.
Lou
,
J. Q.
,
Yang
,
Y. L.
,
Wu
,
C. Y.
,
Li
,
G. P.
,
Chen
,
T. H.
, and
Ma
,
J. Q.
,
2019
, “
Underwater Oscillation Performance and 3D Vortex Distribution Generated by Miniature Caudal Fin-Like Propulsion with Macro Fiber Composite Actuation
,”
Sens. Actuators, A
,
303
, p.
111587
.
25.
Guo
,
S. X.
,
Ge
,
Y. M.
,
Li
,
L. F.
, and
Liu
,
S.
,
2006
, “
Underwater Swimming Micro Robot Using IPMC Actuator
,”
IEEE ICMA 2006: Proceeding of the 2006 IEEE International Conference on Mechatronics and Automation, Vols 1–3, Proceedings
,
Henan Univ Sci & Technol
,
Luoyang, Peoples R China
,
June 25–28
, pp.
249
254
.
26.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Shea
,
H.
, and
Floreano
,
D.
,
2018
, “
Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators
,”
Soft Rob.
,
5
(
4
), pp.
466
474
.
27.
Xie
,
O.
,
Zhu
,
Q. X.
,
Shen
,
L.
, and
Ren
,
K.
,
2018
, “
Kinematic Study on a Self-Propelled Bionic Underwater Robot with Undulation and Jet Propulsion Modes
,”
Robotica
,
36
(
11
), pp.
1613
1626
.
28.
Abdelnour
,
K.
,
Mancia
,
E.
,
Peterson
,
S. D.
, and
Porfiri
,
M.
,
2009
, “
Hydrodynamics of Underwater Propulsors Based on Ionic Polymer–Metal Composites: a Numerical Study
,”
Smart. Mater. Struct.
,
18
(
8
), p.
085006
.
29.
Wang
,
Z. J.
,
Birch
,
J. M.
, and
Dickinson
,
M. H.
,
2004
, “
Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments
,”
J. Exp. Biol.
,
207
(
3
), pp.
449
460
.
30.
Han
,
P.
,
Lauder
,
G. V.
, and
Dong
,
H. B.
,
2020
, “
Hydrodynamics of Median-Fin Interactions in Fish-Like Locomotion: Effects of Fin Shape and Movement
,”
Phys. Fluids
,
32
(
1
), p.
011902
.
31.
Gaolt
,
A.
, and
Triantafyllou
,
M. S.
,
2018
, “
Independent Caudal Fin Actuation Enables High Energy Extraction and Control in Two-Dimensional Fish-Like Group Swimming
,”
J. Fluid Mech.
,
850
, pp.
304
335
.
32.
Yen
,
W. K.
,
Sierra
,
M.
, and
Guo
,
J.
,
2018
, “
Controlling a Robotic Fish to Swim Along a Wall Using Hydrodynamic Pressure Feedback
,”
IEEE J. Oceanic Eng.
,
43
(
2
), pp.
369
380
.
33.
Zhou
,
C.
,
Hou
,
Z. G.
,
Cao
,
Z. Q.
,
Wang
,
S.
, and
Tan
,
M.
,
2013
, “
Motion Modeling and Neural Networks Based Yaw Control of a Biomimetic Robotic Fish
,”
Inf. Sci.
,
237
, pp.
39
48
.
34.
Yu
,
J. Z.
,
Sun
,
F. H.
,
Xu
,
D.
, and
Tan
,
M.
,
2015
, “
Embedded Vision-Guided 3-D Tracking Control for Robotic Fish
,”
IEEE Trans. Ind. Electron.
,
63
(
1
), pp.
355
363
.
35.
Yu
,
J. Z.
,
Liu
,
L. Z.
, and
Wang
,
L.
,
2006
, “
Dynamic Modeling and Experimental Validation of Biomimetic Robotic Fish
,”
IEEE 2006 American Control Conference
,
Minneapolis, MN
,
June 14–16
, pp.
4129
4134
.
36.
Geoffrey
,
T.
,
1952
, “
Analysis of The Swimming of Long and Narrow Animals
,”
Proc. R. Soc. Lond., A Math. Phys. Sci.
,
214
(
1117
), pp.
158
183
.
37.
Wu
,
T.
, and
Yao
,
T.
,
1961
, “
Swimming of a Waving Plate
,”
J. Fluid Mech.
,
10
(
3
), pp.
321
344
.
38.
Wang
,
S. Y.
,
Zhu
,
J.
,
Wang
,
X. G.
,
Li
,
Q. F.
,
Zhu
,
H. Y.
, and
Zhou
,
R.
,
2018
, “
Hydrodynamics Study and Simulation of a Bionic Fish Tail Driving System Based on Linear Hypocycloid
,”
Int. J. Adv. Robot Syst.
,
15
(
2
), p.
1729881417746950
.
39.
Yu
,
J. Z.
,
Wang
,
T. Z.
,
Wu
,
Z. X.
, and
Tan
,
M.
,
2020
, “
Design of a Miniature Underwater Angle-of-Attack Sensor and its Application to a Self-Propelled Robotic Fish
,”
IEEE J. Oceanic Eng.
,
45
(
4
), pp.
1295
1307
.
40.
Wang
,
W.
,
Dai
,
X.
,
Li
,
L.
,
Gheneti
,
B. H.
,
Ding
,
Y.
,
Yu
,
J. Z.
, and
Xie
,
G. M.
,
2018
, “
Three-Dimensional Modeling of a Fin-Actuated Robotic Fish with Multimodal Swimming
,”
IEEE ASME Trans. Mechatron.
,
23
(
4
), pp.
1641
1652
.
41.
Li
,
Z. G.
,
Ge
,
L. M.
,
Xu
,
W. Q.
, and
Du
,
Y. J.
,
2018
, “
Turning Characteristics of Biomimetic Robotic Fish Driven by Two Degrees of Freedom of Pectoral Fins and Flexible Body/Caudal Fin
,”
Int. J. Adv. Robot Syst.
,
15
(
1
), p.
1729881417749950
.
42.
Kopman
,
V.
,
Laut
,
J.
,
Acquaviva
,
F.
,
Rizzo
,
A.
, and
Porfiri
,
M.
,
2015
, “
Dynamic Modeling of a Robotic Fish Propelled by a Compliant Tail
,”
IEEE J. Oceanic Eng.
,
40
(
1
), pp.
209
221
.
43.
Kancharala
,
A. K.
,
Philen
,
M. K.
, and
Patil
,
M. J.
,
2012
, “
The Role of Compliant Joint and Flexibility on the Propulsive Performance of a Self Propelled Caudal Fin
,”
Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Stone Mountain, GA
,
Sep. 19–21
, pp.
637
648
.
44.
Krishnadas
,
A.
,
Ravichandran
,
S.
, and
Rajagopal
,
P.
,
2018
, “
Analysis of Biomimetic Caudal Fin Shapes for Optimal Propulsive Efficiency
,”
Ocean Eng.
,
153
, pp.
132
142
.
45.
Lock
,
R. J.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2014
, “
Impact of Marine Locomotion Constraints on a Bio-Inspired Aerial-Aquatic Wing: Experimental Performance Verification
,”
J. Mech. Rob.
,
6
(
1
), p.
011001
.
46.
Chen
,
Z.
,
Hou
,
P. Q.
, and
Ye
,
Z. H.
,
2019
, “
Robotic Fish Propelled by a Servo Motor and Ionic Polymer-Metal Composite Hybrid Tail
,”
ASME J. Dyn. Syst. Meas. Contr.
,
141
(
7
), p.
071001
.
47.
Zhong
,
Y.
,
Song
,
J. L.
,
Yu
,
H. Y.
, and
Du
,
R. X.
,
2018
, “
A Study on Kinematic Pattern of Fish Undulatory Locomotion Using a Robot Fish
,”
J. Mech. Rob.
,
10
(
4
), p.
041013
.
48.
Liao
,
P.
,
Zhang
,
S. W.
, and
Sun
,
D.
,
2018
, “
A Dual Caudal-fin Miniature Robotic Fish with an Integrated Oscillation and Jet Propulsive Mechanism
,”
Bioinspiration Biomimetics
,
13
(
3
), p.
036007
.
49.
Zhang
,
S. W.
,
Qian
,
Y.
,
Liao
,
P.
,
Qin
,
F. H.
, and
Yang
,
J. M.
,
2016
, “
Design and Control of an Agile Robotic Fish with Integrative Biomimetic Mechanisms
,”
IEEE ASME Trans. Mechatron.
,
21
(
4
), pp.
1846
1857
.
50.
Zhao
,
Q. L.
,
Liu
,
S. Q.
, and
Chen
,
J. H.
,
2021
, “
Fast-Moving Piezoelectric Micro-Robotic Fish with Double Caudal Fins
,”
Rob. Auton. Syst.
,
140
, p.
103733
.
51.
Wood
,
R. J.
,
2007
, “
Design, Fabrication, and Analysis of a 3 DOF, 3 cm Flapping-Wing MAV
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct 29–Nov. 2
, pp.
1582
1587
.
52.
Deng
,
X. Y.
,
Schenato
,
L.
,
Wu
,
W. C.
, and
Sastry
,
S.
,
2006
, “
Flapping Flight for Biomimetic Robotic Insects: Part I-System Modeling
,”
IEEE Trans. Robot.
,
22
(
4
), pp.
776
788
.
53.
Whitney
,
J. P.
, and
Wood
,
R. J.
,
2010
, “
Aeromechanics of Passive Rotation in Flapping Flight
,”
J. Fluid. Mech.
,
660
, pp.
197
220
.
54.
Dickinson
,
M. H.
,
Lehmann
,
F. O.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
.
55.
He
,
G. P.
,
Su
,
T. T.
,
Jia
,
T. M.
,
Zhao
,
L.
, and
Zhao
,
Q. L.
,
2019
, “
Dynamics Analysis and Control of a Bird Scale Underactuated Flapping-Wing Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
28
(
4
), pp.
1233
1242
.
You do not currently have access to this content.