Abstract
An analytical hydrodynamics model for a piezoelectric micro-robotic fish with double caudal fins is presented in this paper. The relation between displacement of the piezoelectric actuator and oscillating angle of the caudal fin is established based on the analysis of the flexible four-bar linkage transmission. The hydrodynamics of caudal fins are described by airfoil and blade element theories. Furthermore, the dynamics and kinetics of the whole micro-robotic fish are analyzed and validated by experiments.
Issue Section:
Technical Brief
References
1.
Raj
, A.
, and Thakur
, A.
, 2014
, “Fish-Inspired Robots: Design, Sensing, Actuation, and Autonomy—A Review of Research
,” Bioinspiration Biomimetics
, 11
(3
), p. 031001
. 2.
Scaradozzi
, D.
, Palmieri
, G.
, Costa
, D.
, and Pinelli
, A.
, 2017
, “BCF Swimming Locomotion for Autonomous Underwater Robots: a Review and a Novel Solution to Improve Control and Efficiency
,” Ocean Eng.
, 130
, pp. 437
–453
. 3.
Wang
, Y. W.
, Tan
, J. B.
, and Zhao
, D. B.
, 2015
, “Design and Experiment on a Biomimetic Robotic Fish Inspired by Freshwater Stingray
,” J. Bionic. Eng.
, 12
(2
), pp. 204
–216
. 4.
Triantafyllou
, M. S.
, Winey
, N.
, Trakht
, Y.
, Elhassid
, R.
, and Yoerger
, D.
, 2019
, “Biomimetic Design of Dorsal Fins for AUVs to Enhance Maneuverability
,” Bioinspiration Biomimetics
, 15
(3
), p. 035003
. 5.
Liu
, G. J.
, Liu
, S. K.
, Xie
, Y. C.
, Leng
, D. X.
, and Li
, G. H.
, 2020
, “The Analysis of Biomimetic Caudal Fin Propulsion Mechanism with CFD
,” Appl. Bionics. Biomech.
, 2020
, p. 7839049
. 6.
Lamas
, M. I.
, and Rodriguez
, C. G.
, 2020
, “Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations
,” J. Mar. Sci. Eng.
, 8
(7
), p. 479
. 7.
Salazar
, R.
, Campos
, A.
, Fuentes
, V.
, and Abdelkefi
, A.
, 2019
, “A Review on the Modeling, Materials, and Actuators of Aquatic Unmanned Vehicles
,” Ocean Eng.
, 172
, pp. 257
–285
. 8.
Arastehfar
, S.
, Chew
, C. M.
, Jalalian
, A.
, Gunawan
, G.
, and Yeo
, K. S.
, 2019
, “A Relationship Between Sweep Angle of Flapping Pectoral Fins and Thrust Generation
,” J. Mech. Rob.
, 11
(1
), p. 011014
. 9.
Zhang
, F. T.
, Zhang
, F. M.
, and Tan
, X. B.
, 2014
, “Tail-Enabled Spiraling Maneuver for Gliding Robotic Fish
,” ASME J. Dyn. Syst. Meas. Contr.
, 136
(4
), p. 041028
. 10.
Costa
, D.
, Palmieri
, G.
, Scaradozzi
, D.
, and Callegari
, M.
, 2021
, “Experimental Validation of a Bio-Inspired Thruster
,” ASME J. Dyn. Syst. Meas. Contr.
, 143
(8
), p. 081004
. 11.
Wang
, J. X.
, McKinley
, P. K.
, and Tan
, X. B.
, 2015
, “Dynamic Modeling of Robotic Fish With a Base-Actuated Flexible Tail
,” ASME J. Dyn. Syst. Meas. Contr.
, 137
(1
), p. 011004
. 12.
Castano
, M. L.
, and Tan
, X. B.
, 2019
, “Model Predictive Control-Based Path-Following for Tail-Actuated Robotic Fish
,” ASME J. Dyn. Syst. Meas. Contr.
, 141
(7
), p. 071012
. 13.
Matta
, A.
, Pendar
, H.
, Battaglia
, F.
, and Bayandor
, J.
, 2020
, “Impact of Caudal Fin Shape on Thrust Production of a Thunniform Swimmer
,” J. Bionic. Eng.
, 17
(2
), pp. 254
–269
. 14.
Ijspeert
, A. J.
, 2014
, “Biorobotics: Using Robots to Emulate and Investigate Agile Locomotion
,” Science
, 346
(6206
), pp. 196
–203
. 15.
Ijspeert
, A. J.
, Crespi
, A.
, Ryczko
, D.
, and Cabelguen
, J. M.
, 2007
, “From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model
,” Science
, 315
(5817
), pp. 1416
–1420
. 16.
Ming
, A. G.
, Park
, S.
, Nagata
, Y.
, and Shimojo
, M.
, 2009
, “Development of Underwater Robots Using Piezoelectric Fiber Composite
,” 2009 IEEE International Conference On Robotics And Automation
, ICRA
, Kobe, Japan
, May 12–17
, pp. 3435
–3440
.17.
Zhu
, J.
, White
, C.
, Wainwright
, D. K.
, Di Santo
, V.
, Lauder
, G. V.
, and Bart-Smith
, H.
, 2019
, “Tuna Robotics: a High-Frequency Experimental Platform Exploring the Performance Space of Swimming Fishes
,” Sci. Rob.
, 4
(34
), p. eaax4615
. 18.
Marchese
, A. D.
, Onal
, C. D.
, and Rus
, D.
, 2014
, “Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators
,” Soft Rob.
, 1
(1
), pp. 75
–87
. 19.
Wang
, Z. L.
, Hang
, G. R.
, Li
, J.
, Wang
, Y. W.
, and Xiao
, K.
, 2008
, “A Micro-Robot Fish with Embedded SMA Wire Actuated Flexible Biomimetic Fin
,” Sens. Actuators, A
, 144
(2
), pp. 354
–360
. 20.
Berlinger
, F.
, Duduta
, M.
, Gloria
, H.
, Clarke
, D.
, Nagpal
, R.
, and Wood
, R. J.
, 2018
, “A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles
,” 2018 IEEE International Conference On Robotics And Automation
, ICRA
, Brisbane, Australia
, May 21–25
, pp. 3429
–3435
.21.
Chen
, Z.
, Stephan
, S.
, and Tan
, X. B.
, 2010
, “Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer–Metal Composite Caudal Fin
,” IEEE ASME Trans. Mechatron.
, 15
(3
), pp. 448
–459
. 22.
Guo
, S. X.
, Fukuda
, T.
, and Asaka
, K.
, 2003
, “A New Type of Fish-Like Underwater Microrobot
,” IEEE ASME Trans. Mechatron.
, 8
(1
), pp. 136
–141
. 23.
Yan
, Q.
, Han
, Z.
, Zhang
, S. W.
, and Yang
, J.
, 2008
, “Parametric Research of Experiments on a Carangiform Robotic Fish
,” J. Bionic Eng.
, 5
(2
), pp. 95
–101
. 24.
Lou
, J. Q.
, Yang
, Y. L.
, Wu
, C. Y.
, Li
, G. P.
, Chen
, T. H.
, and Ma
, J. Q.
, 2019
, “Underwater Oscillation Performance and 3D Vortex Distribution Generated by Miniature Caudal Fin-Like Propulsion with Macro Fiber Composite Actuation
,” Sens. Actuators, A
, 303
, p. 111587
. 25.
Guo
, S. X.
, Ge
, Y. M.
, Li
, L. F.
, and Liu
, S.
, 2006
, “Underwater Swimming Micro Robot Using IPMC Actuator
,” IEEE ICMA 2006: Proceeding of the 2006 IEEE International Conference on Mechatronics and Automation, Vols 1–3, Proceedings
, Henan Univ Sci & Technol
, Luoyang, Peoples R China
, June 25–28
, pp. 249
–254
.26.
Shintake
, J.
, Cacucciolo
, V.
, Shea
, H.
, and Floreano
, D.
, 2018
, “Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators
,” Soft Rob.
, 5
(4
), pp. 466
–474
. 27.
Xie
, O.
, Zhu
, Q. X.
, Shen
, L.
, and Ren
, K.
, 2018
, “Kinematic Study on a Self-Propelled Bionic Underwater Robot with Undulation and Jet Propulsion Modes
,” Robotica
, 36
(11
), pp. 1613
–1626
. 28.
Abdelnour
, K.
, Mancia
, E.
, Peterson
, S. D.
, and Porfiri
, M.
, 2009
, “Hydrodynamics of Underwater Propulsors Based on Ionic Polymer–Metal Composites: a Numerical Study
,” Smart. Mater. Struct.
, 18
(8
), p. 085006
. 29.
Wang
, Z. J.
, Birch
, J. M.
, and Dickinson
, M. H.
, 2004
, “Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments
,” J. Exp. Biol.
, 207
(3
), pp. 449
–460
. 30.
Han
, P.
, Lauder
, G. V.
, and Dong
, H. B.
, 2020
, “Hydrodynamics of Median-Fin Interactions in Fish-Like Locomotion: Effects of Fin Shape and Movement
,” Phys. Fluids
, 32
(1
), p. 011902
. 31.
Gaolt
, A.
, and Triantafyllou
, M. S.
, 2018
, “Independent Caudal Fin Actuation Enables High Energy Extraction and Control in Two-Dimensional Fish-Like Group Swimming
,” J. Fluid Mech.
, 850
, pp. 304
–335
. 32.
Yen
, W. K.
, Sierra
, M.
, and Guo
, J.
, 2018
, “Controlling a Robotic Fish to Swim Along a Wall Using Hydrodynamic Pressure Feedback
,” IEEE J. Oceanic Eng.
, 43
(2
), pp. 369
–380
. 33.
Zhou
, C.
, Hou
, Z. G.
, Cao
, Z. Q.
, Wang
, S.
, and Tan
, M.
, 2013
, “Motion Modeling and Neural Networks Based Yaw Control of a Biomimetic Robotic Fish
,” Inf. Sci.
, 237
, pp. 39
–48
. 34.
Yu
, J. Z.
, Sun
, F. H.
, Xu
, D.
, and Tan
, M.
, 2015
, “Embedded Vision-Guided 3-D Tracking Control for Robotic Fish
,” IEEE Trans. Ind. Electron.
, 63
(1
), pp. 355
–363
. 35.
Yu
, J. Z.
, Liu
, L. Z.
, and Wang
, L.
, 2006
, “Dynamic Modeling and Experimental Validation of Biomimetic Robotic Fish
,” IEEE 2006 American Control Conference
, Minneapolis, MN
, June 14–16
, pp. 4129
–4134
.36.
Geoffrey
, T.
, 1952
, “Analysis of The Swimming of Long and Narrow Animals
,” Proc. R. Soc. Lond., A Math. Phys. Sci.
, 214
(1117
), pp. 158
–183
. 37.
Wu
, T.
, and Yao
, T.
, 1961
, “Swimming of a Waving Plate
,” J. Fluid Mech.
, 10
(3
), pp. 321
–344
. 38.
Wang
, S. Y.
, Zhu
, J.
, Wang
, X. G.
, Li
, Q. F.
, Zhu
, H. Y.
, and Zhou
, R.
, 2018
, “Hydrodynamics Study and Simulation of a Bionic Fish Tail Driving System Based on Linear Hypocycloid
,” Int. J. Adv. Robot Syst.
, 15
(2
), p. 1729881417746950
. 39.
Yu
, J. Z.
, Wang
, T. Z.
, Wu
, Z. X.
, and Tan
, M.
, 2020
, “Design of a Miniature Underwater Angle-of-Attack Sensor and its Application to a Self-Propelled Robotic Fish
,” IEEE J. Oceanic Eng.
, 45
(4
), pp. 1295
–1307
. 40.
Wang
, W.
, Dai
, X.
, Li
, L.
, Gheneti
, B. H.
, Ding
, Y.
, Yu
, J. Z.
, and Xie
, G. M.
, 2018
, “Three-Dimensional Modeling of a Fin-Actuated Robotic Fish with Multimodal Swimming
,” IEEE ASME Trans. Mechatron.
, 23
(4
), pp. 1641
–1652
. 41.
Li
, Z. G.
, Ge
, L. M.
, Xu
, W. Q.
, and Du
, Y. J.
, 2018
, “Turning Characteristics of Biomimetic Robotic Fish Driven by Two Degrees of Freedom of Pectoral Fins and Flexible Body/Caudal Fin
,” Int. J. Adv. Robot Syst.
, 15
(1
), p. 1729881417749950
. 42.
Kopman
, V.
, Laut
, J.
, Acquaviva
, F.
, Rizzo
, A.
, and Porfiri
, M.
, 2015
, “Dynamic Modeling of a Robotic Fish Propelled by a Compliant Tail
,” IEEE J. Oceanic Eng.
, 40
(1
), pp. 209
–221
. 43.
Kancharala
, A. K.
, Philen
, M. K.
, and Patil
, M. J.
, 2012
, “The Role of Compliant Joint and Flexibility on the Propulsive Performance of a Self Propelled Caudal Fin
,” Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, Stone Mountain, GA
, Sep. 19–21
, pp. 637
–648
.44.
Krishnadas
, A.
, Ravichandran
, S.
, and Rajagopal
, P.
, 2018
, “Analysis of Biomimetic Caudal Fin Shapes for Optimal Propulsive Efficiency
,” Ocean Eng.
, 153
, pp. 132
–142
. 45.
Lock
, R. J.
, Vaidyanathan
, R.
, and Burgess
, S. C.
, 2014
, “Impact of Marine Locomotion Constraints on a Bio-Inspired Aerial-Aquatic Wing: Experimental Performance Verification
,” J. Mech. Rob.
, 6
(1
), p. 011001
. 46.
Chen
, Z.
, Hou
, P. Q.
, and Ye
, Z. H.
, 2019
, “Robotic Fish Propelled by a Servo Motor and Ionic Polymer-Metal Composite Hybrid Tail
,” ASME J. Dyn. Syst. Meas. Contr.
, 141
(7
), p. 071001
. 47.
Zhong
, Y.
, Song
, J. L.
, Yu
, H. Y.
, and Du
, R. X.
, 2018
, “A Study on Kinematic Pattern of Fish Undulatory Locomotion Using a Robot Fish
,” J. Mech. Rob.
, 10
(4
), p. 041013
. 48.
Liao
, P.
, Zhang
, S. W.
, and Sun
, D.
, 2018
, “A Dual Caudal-fin Miniature Robotic Fish with an Integrated Oscillation and Jet Propulsive Mechanism
,” Bioinspiration Biomimetics
, 13
(3
), p. 036007
. 49.
Zhang
, S. W.
, Qian
, Y.
, Liao
, P.
, Qin
, F. H.
, and Yang
, J. M.
, 2016
, “Design and Control of an Agile Robotic Fish with Integrative Biomimetic Mechanisms
,” IEEE ASME Trans. Mechatron.
, 21
(4
), pp. 1846
–1857
. 50.
Zhao
, Q. L.
, Liu
, S. Q.
, and Chen
, J. H.
, 2021
, “Fast-Moving Piezoelectric Micro-Robotic Fish with Double Caudal Fins
,” Rob. Auton. Syst.
, 140
, p. 103733
. 51.
Wood
, R. J.
, 2007
, “Design, Fabrication, and Analysis of a 3 DOF, 3 cm Flapping-Wing MAV
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Diego, CA
, Oct 29–Nov. 2
, pp. 1582
–1587
.52.
Deng
, X. Y.
, Schenato
, L.
, Wu
, W. C.
, and Sastry
, S.
, 2006
, “Flapping Flight for Biomimetic Robotic Insects: Part I-System Modeling
,” IEEE Trans. Robot.
, 22
(4
), pp. 776
–788
. 53.
Whitney
, J. P.
, and Wood
, R. J.
, 2010
, “Aeromechanics of Passive Rotation in Flapping Flight
,” J. Fluid. Mech.
, 660
, pp. 197
–220
. 54.
Dickinson
, M. H.
, Lehmann
, F. O.
, and Sane
, S. P.
, 1999
, “Wing Rotation and the Aerodynamic Basis of Insect Flight
,” Science
, 284
(5422
), pp. 1954
–1960
. 55.
He
, G. P.
, Su
, T. T.
, Jia
, T. M.
, Zhao
, L.
, and Zhao
, Q. L.
, 2019
, “Dynamics Analysis and Control of a Bird Scale Underactuated Flapping-Wing Vehicle
,” IEEE Trans. Control Syst. Technol.
, 28
(4
), pp. 1233
–1242
. Copyright © 2021 by ASME
You do not currently have access to this content.