Abstract

Upper limb paralysis and movement disorders resulting from neurologic injuries can be treated with an upper limb exoskeleton robot that assists with movement retraining. Cable-driven exoskeletons have been widely studied because of their lightness, compact structure, and low cost. However, the problems of shoulder squeeze force and system stability have not been solved. In this article, we present a prototype parallel cable-driven shoulder mechanism with series springs. The theoretical analysis suggests that the stability of the mechanism is improved compared with that of the previous mechanism, and the effects of stiffness, upper limb weight, and mechanism parameters on the shoulder joint extrusion pressure are analyzed by simulation and experimental results. The results show that this mechanism plays an important role in reducing or eliminating the shoulder squeeze pressure and improving the stability of the mechanism. Moreover, the mechanism has good portability and can be combined with other exoskeletons to facilitate various robot-assisted upper limb rehabilitation training.

References

1.
Babaiasl
,
M.
,
Mahdioun
,
S. H.
,
Jaryani
,
P.
, and
Yazdani
,
M.
,
2016
, “
A Review of Technological and Clinical Aspects of Robot-Aided Rehabilitation of Upper-Extremity After Stroke
,”
Disabil. Rehabilitation. Assist. Technol.
,
11
(
4
), pp.
263
280
.
2.
Hsieh
,
H.-C.
,
Chen
,
D.-F.
,
Chien
,
L.
, and
Lan
,
C.-C.
,
2017
, “
Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation
,”
IEEE ASME Trans. Mechatron.
,
22
(
5
), pp.
2034
2045
.
3.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III–Arm Therapy Exoskeleton with an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.
4.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.
5.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2016
, “
Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE ASME Trans. Mechatron.
,
22
(
1
), pp.
161
172
.
6.
Li
,
N.
,
Yang
,
T.
,
Yu
,
P.
,
Chang
,
J.
,
Zhao
,
L.
,
Zhao
,
X.
,
Elhajj
,
I. H.
,
Xi
,
N.
, and
Liu
,
L.
,
2018
, “
Bio-inspired Upper Limb Soft Exoskeleton to Reduce Stroke-Induced Complications
,”
Bioinspiration Biomimetics
,
13
(
6
), p.
066001
.
7.
Hanafusa
,
A.
,
Shiki
,
F.
,
Ishii
,
H.
,
Nagura
,
M.
,
Kubota
,
Y.
,
Ohnishi
,
K.
, and
Shibata
,
Y.
,
2017
, “
Development of an Active Upper Limb Orthosis Controlled by EMG with Upper arm Rotation
,”
Proceedings of the International Conference on Intelligent Human Systems Integration
,
Dubai, United Arab Emirates
,
Dec. 31
, Springer, pp.
163
169
.
8.
Chen
,
J.
, and
Lum
,
P. S.
,
2016
, “
Spring Operated Wearable Enhancer for Arm Rehabilitation (SpringWear) After Stroke
,”
Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Orlando, FL
,
Aug. 16–20
, IEEE, pp.
4893
4896
.
9.
Lessard
,
S.
,
Pansodtee
,
P.
,
Robbins
,
A.
,
Trombadore
,
J. M.
,
Kurniawan
,
S.
, and
Teodorescu
,
M.
,
2018
, “
A Soft Exosuit for Flexible Upper-Extremity Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabilitation Eng.
,
26
(
8
), pp.
1604
1617
.
10.
Teng
,
L.
,
Gull
,
M. A.
, and
Bai
,
S.
,
2020
, “
PD-Based Fuzzy Sliding Mode Control of a Wheelchair Exoskeleton Robot
,”
IEEE ASME Trans. Mechatron.
,
25
(
5
), pp.
2546
2555
.
11.
Nann
,
M.
,
Cordella
,
F.
,
Trigili
,
E.
,
Lauretti
,
C.
,
Bravi
,
M.
,
Miccinilli
,
S.
,
Catalan
,
J. M.
,
Badesa
,
F. J.
,
Crea
,
S.
, and
Bressi
,
F.
,
2020
, “
Restoring Activities of Daily Living Using an EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke
,”
IEEE Syst. J.
,
15
(
2
), pp.
2314
2321
.
12.
Rahman
,
M. H.
,
Rahman
,
M. J.
,
Cristobal
,
O.
,
Saad
,
M.
,
Kenné
,
J.-P.
, and
Archambault
,
P. S.
,
2015
, “
Development of a Whole arm Wearable Robotic Exoskeleton for Rehabilitation and to Assist Upper Limb Movements
,”
Robotica
,
33
(
1
), pp.
19
39
.
13.
Otten
,
A.
,
Voort
,
C.
,
Stienen
,
A.
,
Aarts
,
R.
,
van Asseldonk
,
E.
, and
van der Kooij
,
H.
,
2015
, “
LIMPACT: A Hydraulically Powered Self-aligning Upper Limb Exoskeleton
,”
IEEE ASME Trans. Mechatron.
,
20
(
5
), pp.
2285
2298
.
14.
Sankai
,
Y.
,
2010
, “HAL: Hybrid Assistive Limb Based on Cybernics,”
Robotics Research
,
Springer
, pp.
25
34
.
15.
Neumann
,
D. A.
,
2013
,
Kinesiology of the Musculoskeletal System-e-Book: Foundations for Rehabilitation
,
Elsevier Health Sciences
,
pp. 127-173
.
16.
Trigili
,
E.
,
Crea
,
S.
,
Moisè
,
M.
,
Baldoni
,
A.
,
Cempini
,
M.
,
Ercolini
,
G.
,
Marconi
,
D.
,
Posteraro
,
F.
,
Carrozza
,
M. C.
, and
Vitiello
,
N.
,
2019
, “
Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-stroke Rehabilitation
,”
IEEE ASME Trans. Mechatron.
,
24
(
4
), pp.
1485
1496
.
17.
Tiseni
,
L.
,
Xiloyannis
,
M.
,
Chiaradia
,
D.
,
Lotti
,
N.
,
Solazzi
,
M.
,
Van der Kooij
,
H.
,
Frisoli
,
A.
, and
Masia
,
L.
, “
On the Edge Between Soft and Rigid: An Assistive Shoulder Exoskeleton With Hyper-redundant Kinematics
,”
Proceedings of 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
,
IEEE
, pp.
618
624
.
18.
Yan
,
H.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Design and Validation of a Compatible 3-Degrees of Freedom Shoulder Exoskeleton With an Adaptive Center of Rotation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071006
.
19.
Xiong
,
Y.
,
Xiong
,
C.
,
Jiang
,
X.
,
Sun
,
R.
, and
Huang
,
X.
,
2009
, “
Control Methods for Exoskeleton Rehabilitation Robot Driven With Pneumatic Muscles
,”
Ind. Rob. Int. J.
36
(
3
), pp.
210
220
20.
Jiang
,
X.
,
Xiong
,
C.
,
Sun
,
R.
, and
Xiong
,
Y.
,
2010
, “
Characteristics of the Robotic Arm of a 9-DoF Upper Limb Rehabilitation Robot Powered by Pneumatic Muscles
,”
Proceedings of International Conference on Intelligent Robotics and Applications
,
Shanghai, China
,
Nov. 10–12
, Springer, pp.
463
474
.
21.
Zhang
,
H.
,
Austin
,
H.
,
Buchanan
,
S.
,
Herman
,
R.
,
Koeneman
,
J.
, and
He
,
J.
,
2011
, “
Feasibility Studies of Robot-Assisted Stroke Rehabilitation at Clinic and Home Settings Using RUPERT
,”
Proc. 2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, IEEE, pp.
1
6
.
22.
Mao
,
Y.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2014
, “
Real-time Estimation of Glenohumeral Joint Rotation Center with Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
014502
.
23.
Ji
,
Y.
,
Chen
,
W.
,
Zhang
,
J.
,
Fang
,
Z.
, and
Chen
,
W.
,
2020
, “
Self-calibration of Wearable Upper Limb Cable-Driven Exoskeleton
,”
Proceedings of 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Kristiansand, Norway
,
Nov. 9–13
, IEEE, pp.
1520
1525
.
24.
O'Neill
,
C. T.
,
Phipps
,
N. S.
,
Cappello
,
L.
,
Paganoni
,
S.
, and
Walsh
,
C. J.
,
2017
, “
A Soft Wearable Robot for the Shoulder: Design, Characterization, and Preliminary Testing
,”
Proceedings of 2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, IEEE, pp.
1672
1678
.
25.
Xu
,
K.
,
Qiu
,
D.
, and
Simaan
,
N.
,
2011
, “
A Pilot Investigation of Continuum Robots as a Design Alternative for Upper Extremity Exoskeletons
,”
Proceedings of 2011 IEEE International Conference on Robotics and Biomimetics
,
Karon Beach, Thailand
,
Dec. 7–11
, IEEE, pp.
656
662
.
26.
Ma
,
J.
,
Chen
,
D.
,
Liu
,
Z.
, and
Wang
,
M.
, “
A Soft Wearable Exoskeleton with Pneumatic Actuator for Assisting Upper Limb
,”
Proceedings of 2020 IEEE International Conference on Real-Time Computing and Robotics (RCAR)
,
IEEE
, pp.
99
104
.
27.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1366
1366
.
28.
DePalma
,
M. J.
, and
Johnson
,
E. W.
,
2003
, “
Detecting and Treating Shoulder Impingement Syndrome: the Role of Scapulothoracic Dyskinesis
,”
Phys. Sportsmed.
,
31
(
7
), pp.
25
32
.
29.
Agrawal
,
S. K.
,
Dubey
,
V. N.
,
Gangloff Jr
,
J. J.
,
Brackbill
,
E.
, and
Sangwan
,
V.
,
2009
, “
Optimization and Design of a Cable Driven Upper Arm Exoskeleton
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, Vol. 49040, pp.
3
10
.
30.
Mao
,
Y.
,
Jin
,
X.
,
Dutta
,
G. G.
,
Scholz
,
J. P.
, and
Agrawal
,
S. K.
,
2014
, “
Human Movement Training with a Cable Driven arm Exoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
.
31.
Koo
,
D.
,
Chang
,
P. H.
,
Sohn
,
M. K.
, and
Shin
,
J. H.
,
2011
, “
Shoulder Mechanism Design of an Exoskeleton Robot for Stroke Patient Rehabilitation
,”
Proc. 2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, IEEE, pp.
1
6
.
32.
Li
,
M.
,
Guo
,
W.
,
Xu
,
G.
,
Jia
,
Y.
,
Xie
,
J.
, and
Zhang
,
X.
,
2018
, “
A Tendon-Driven Upper-Limb Rehabilitation Robot
,”
Proc. 2018 15th International Conference on Ubiquitous Robots (UR)
,
Honolulu, HI
,
June 26–30
, IEEE, pp.
302
308
.
33.
Crosbie
,
J.
,
Kilbreath
,
S. L.
,
Hollmann
,
L.
, and
York
,
S.
,
2008
, “
Scapulohumeral Rhythm and Associated Spinal Motion
,”
Clin. Biomech.
,
23
(
2
), pp.
184
192
.
34.
Kuan
,
J.-Y.
,
Pasch
,
K. A.
, and
Herr
,
H. M.
,
2018
, “
A High-Performance Cable-Drive Module for the Development of Wearable Devices
,”
IEEE ASME Trans. Mechatron.
,
23
(
3
), pp.
1238
1248
.
35.
Schiele
,
A.
,
Letier
,
P.
,
Van Der Linde
,
R.
, and
Van Der Helm
,
F.
,
2006
, “
Bowden Cable Actuator for Force-Feedback Exoskeletons
,”
Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, IEEE, pp.
3599
3604
.
36.
Plagenhoef
,
S.
,
Evans
,
F. G.
, and
Abdelnour
,
T.
,
1983
, “
Anatomical Data for Analyzing Human Motion
,”
Res. Q. Exerc. Sport.
,
54
(
2
), pp.
169
178
.
You do not currently have access to this content.