Abstract

This article presents a nonlinear model of an inversion-based generalized cross-spring pivot (IG-CSP) using the beam constraint model (BCM), which can be employed for the geometric error analysis and the characteristic analysis of an inversion-based symmetric cross-spring pivot (IS-CSP). The load-dependent effects are classified into two ways, including the structure load-dependent effects and beam load-dependent effects, where the loading positions, geometric parameters of elastic flexures, and axial forces are the main contributing factors. The closed-form load–rotation relationships of an IS-CSP and a noninversion-based symmetric cross-spring pivot (NIS-CSP) are derived with consideration of the three contributing factors for analyzing the load-dependent effects. The load-dependent effects of IS-CSP and NIS-CSP are compared when the loading position is fixed. The rotational stiffness of the IS-CSP or NIS-CSP can be designed to increase, decrease, or remain constant with axial forces, by regulating the balance between the loading positions and the geometric parameters. The closed-form solution of the center shift of an IS-CSP is derived. The effects of axial forces on the IS-CSP center shift are analyzed and compared with those of a NIS-CSP. Finally, based on the nonlinear analysis results of IS-CSP and NIS-CSP, two new compound symmetric cross-spring pivots are presented and analyzed via analytical and finite element analysis models.

References

1.
Zhao
,
H.
,
Ren
,
S.
,
Li
,
M.
, and
Zhang
,
S.
,
2017
, “
Design and Development of a Two Degree-of-Freedom Rotational Flexure Mechanism for Precise Unbalance Measurements
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041013
.
2.
Zhao
,
H.
,
Bi
,
S.
,
Yu
,
J.
, and
Guo
,
J.
,
2012
, “
Design of a Family of Ultra-Precision Linear Motion Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041012
.
3.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Hu
,
Y.
,
2009
, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021005
.
4.
Yang
,
M.
,
Du
,
Z.
,
Dong
,
W.
, and
Sun
,
L.
,
2019
, “
Design and Modeling of a Variable Thickness Flexure Pivot
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
014502
.
5.
Dearden
,
J.
,
Grames
,
C.
,
Orr
,
J.
,
Jensen
,
B. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Cylindrical Cross-Axis Flexural Pivots
,”
Precis. Eng.
,
51
, pp.
604
613
.
6.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.
7.
Bilancia
,
P.
,
Baggetta
,
M.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2021
, “
Design of a Bio-Inspired Contact-Aided Compliant Wrist
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
102028
.
8.
Tielen
,
V.
, and
Bellouard
,
Y.
,
2014
, “
Three-Dimensional Glass Monolithic Micro-Flexure Fabricated by Femtosecond Laser Exposure and Chemical Etching
,”
Micromachines
,
5
(
3
), pp.
697
710
.
9.
Bi
,
S.
,
Li
,
Y.
, and
Zhao
,
H.
,
2019
, “
Fatigue Analysis and Experiment of Leaf-Spring Pivots for High Precision Flexural Static Balancing Instruments
,”
Precis. Eng.
,
55
, pp.
408
416
.
10.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2012
, “
A Family of Butterfly Flexural Joints: Q-Litf Pivots
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121005
.
11.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Yu
,
Z.
,
2008
, “
Analysis of Rotational Precision for and Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
.
12.
Guérinot
,
A. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2004
, “
Preliminary Design Concepts for Compliant Mechanism Prosthetic Knee Joints
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
1103
1111
.
13.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
14.
Zhao
,
H.
,
Han
,
D.
, and
Bi
,
S.
,
2017
, “
Modeling and Analysis of a Precise Multibeam Flexural Pivot
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081402
.
15.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
.
16.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
17.
Xie
,
Y.
,
Yu
,
J.
, and
Zhao
,
H.
,
2018
, “
Deterministic Design for a Compliant Parallel Universal Joint With Constant Rotational Stiffness
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031006
.
18.
Zelenika
,
S.
, and
De Bona
,
F.
,
2002
, “
Analytical and Experimental Characterisation of High-Precision Flexural Pivots Subjected to Lateral Loads
,”
Precis. Eng.
,
26
(
4
), pp.
381
388
.
19.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2008
, “
The Stiffness Model of Leaf-Type Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082303
.
20.
Su
,
H. J.
,
2009
, “
A Pseudorigid-Body 3r Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
21.
Alqasimi
,
A.
,
Lusk
,
C.
, and
Chimento
,
J.
,
2016
, “
Design of a Linear Bistable Compliant Crank-Slider Mechanism
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051009
.
22.
Seymour
,
K.
,
Bilancia
,
P.
,
Magleby
,
S.
, and
Howell
,
L.
,
2021
, “
Hinges and Curved Lamina Emergent Torsional Joints in Cylindrical Developable Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031002
.
23.
Howell
,
L. L.
,
2001
,
Compliant Mechanism
,
Wiley
,
New York
.
24.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
25.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Stiffness and Stress Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
3
), pp.
378
391
.
26.
Zhao
,
H.
,
Bi
,
S.
, and
Yu
,
J.
,
2011
, “
Nonlinear Deformation Behavior of a Beam-Based Flexural Pivot With Monolithic Arrangement
,”
Precis. Eng.
,
35
(
2
), pp.
369
382
.
27.
Bi
,
S.
,
Zhao
,
H.
, and
Yu
,
J.
,
2009
, “
Modeling of a Cartwheel Flexural Pivot
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061010
.
28.
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2015
, “
Non-Dimensional Approach for Static Balancing of Rotational Flexures
,”
Mech. Mach. Theory
,
84
, pp.
90
98
.
29.
Zhang
,
A.
,
Gou
,
Y.
, and
Yang
,
X.
,
2020
, “
Predicting Nonlinear Stiffness, Motion Range, and Load-Bearing Capability of Leaf-Type Isosceles-Trapezoidal Flexural Pivot Using Comprehensive Elliptic Integral Solution
,”
Math. Probl. Eng.
,
2020
, pp.
1
11
.
30.
Hao
,
G.
, and
Li
,
H.
,
2016
, “
Extended Static Modeling and Analysis of Compliant Compound Parallelogram Mechanisms Considering the Initial Internal Axial Force
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041008
.
31.
Awtar
,
S.
,
2003
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,”
Massachusetts Inst. Technol. Dept Mech. Eng.
http://hdl.handle.net/1721.1/17945
32.
Wu
,
K.
, and
Hao
,
G.
,
2020
, “
Design and Nonlinear Modeling of a Novel Planar Compliant Parallelogram Mechanism With General Tensural-Compresural Beams
,”
Mech. Mach. Theory
,
152
, p.
103950
.
33.
Lee
,
K.-M.
, and
Guo
,
J.
,
2010
, “
Kinematic and Dynamic Analysis of an Anatomically Based Knee Joint
,”
J. Biomech.
,
43
(
7
), pp.
1231
1236
.
34.
Hao
,
G.
, and
Kong
,
X.
,
2013
, “
A Normalization-Based Approach to the Mobility Analysis of Spatial Compliant Multi-Beam Modules
,”
Mech. Mach. Theory
,
59
, pp.
1
19
.
35.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041016
.
36.
Hao
,
G.
,
He
,
X.
, and
Awtar
,
S.
,
2019
, “
Design and Analytical Model of a Compact Flexure Mechanism for Translational Motion
,”
Mech. Mach. Theory
,
142
, p.
103593
.
You do not currently have access to this content.