Abstract

Parallel cables are widely used in cable-driven parallel robots (CDPR) to provide constraints to the end-effector and to realize translational degrees-of-freedom(DOFs). However, when there are structural errors, parallel cables become no longer parallel and will cause orientation errors of the end-effector, which cannot be compensated by kinematic calibration. In this paper, the orientation assurance method is studied considering a 3DOFs translational CDPR. First, the kinematic model and error mapping model of the CDPR are established by using the closed-loop method, considering the pulley radius. Second, the influence of the structural parameters errors on the error of the end-effector is analyzed with the sensitivity index, which establishes a theoretical basis for the simplification of the accuracy synthesis process. Third, the design tolerances of the cable connection points are determined through accuracy synthesis, which is implemented with the genetic algorithm considering the optimal manufacturing cost and the orientation constraints of the end-effector. Finally, to reduce the influence of cable length error, the method of adjusting the initial pose was proposed and studied, which is verified as an effective approach to reduce the orientation error.

References

1.
Cui
,
Z.
,
Tang
,
X.
,
Hou
,
S.
, and
Sun
,
H.
,
2018
, “
Research on Controllable Stiffness of Redundant Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mech.
,
23
(
5
), pp.
2390
2401
.
2.
Miermeister
,
P.
,
Lächele
,
M.
,
Boss
,
R.
,
Masone
,
C.
,
Schenk
,
C.
,
Tesch
,
J.
,
Kerger
,
M.
, et al
,
2016
, “
The Cablerobot Simulator Large Scale Motion Platform Based on Cable Robot Technology
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
3024
3029
.
3.
Thompson
,
R. R.
, and
Blackstone
,
M. S.
,
2005
, “
Three-Dimensional Moving Camera Assembly With an Informational Cover Housing
,”
U.S. Patent No. 6,873,355
,
U.S. Patent and Trademark Office
,
Washington, DC
.
4.
Yangwen
,
X.
,
Qi
,
L.
,
Yaqing
,
Z.
, and
Bin
,
L.
,
2010
, “
Model Aerodynamic Tests With a Wire-Driven Parallel Suspension System in Low-Speed Wind Tunnel
,”
Chin. J. Aeronaut.
,
23
(
4
), pp.
393
400
.
5.
Nan
,
R.
,
Li
,
D.
,
Jin
,
C.
,
Wang
,
Q.
,
Zhu
,
L.
,
Zhu
,
W.
,
Zhang
,
H.
,
Yue
,
Y.
, and
Qian
,
L.
,
2011
, “
The Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST) Project
,”
Int. J. Modern Phys. D
,
20
(
6
), pp.
989
1024
.
6.
Borgstrom
,
P. H.
,
Jordan
,
B. L.
,
Borgstrom
,
B. J.
,
Stealey
,
M. J.
,
Sukhatme
,
G. S.
,
Batalin
,
M. A.
, and
Kaiser
,
W. J.
,
2009
, “
Nims-pl: A Cable-Driven Robot With Self-Calibration Capabilities
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1005
1015
.
7.
Chesser
,
P.
,
Wang
,
P.
,
Vaughan
,
J.
,
Lind
,
R.
, and
Post
,
B.
,
August 5, 2021
, “
Kinematics of a Cable-Driven Robotic Platform for Large-Scale Additive Manufacturing
,”
ASME. J. Mech. Rob.
,
14
(
2
), p.
021010
.
8.
Kawamura
,
S.
,
Choe
,
W.
,
Tanaka
,
S.
, and
Kino
,
H.
,
1997
, “
Development of an Ultrahigh Speed Robot FALCON Using Parallel Wire Drive Systems
,”
J. Rob. Soc. Jpn.
,
15
(
1
), pp.
82
89
.
9.
Verhoeven
,
R.
,
2004
, “
Analysis of the Workspace of Tendon-Based Stewart Platforms
,”
Ph.D. thesis
,
University of Duisburg-Essen
,
North Rhine-Westphalia, Germany
.
10.
Saber
,
O.
,
2015
, “
A Spatial Translational Cable Robot
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031006
.
11.
Bosscher
,
P.
,
Williams
,
R. L.
, and
Tummino
,
M.
,
2005
, “
A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,”
Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
, pp.
589
598
.
12.
Vu
,
D.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2019
, “
Experimental Validation of a Three-Degree-of-Freedom Cable-Suspended Parallel Robot for Spatial Translation With Constant Orientation
,”
ASME. J. Mech. Rob.
,
11
(
2
), p.
024502
.
13.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,”
Mech. Mach. Theory
,
132
, pp.
207
222
.
14.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Alasty
,
A.
, and
Vanini
,
S. A. S.
,
2011
, “
Design of a Large-Scale Cable-Driven Robot With Translational Motion
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
357
366
.
15.
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2020
, “
Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
, p.
103693
.
16.
Zhang
,
Z.
,
Shao
,
Z.
,
Peng
,
F.
,
Li
,
H.
, and
Wang
,
L.
,
2020
, “
Workspace Analysis and Optimal Design of a Translational Cable-Driven Parallel Robot With Passive Springs
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051005
.
17.
Zhang
,
Z.
,
Shao
,
Z.
,
Wang
,
L.
, and
Shih
,
A. J.
,
2018
, “Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot,”
Cable-Driven Parallel Robots. Mechanisms and Machine Science
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Cham. 53
, pp.
340
352
.
18.
Caro
,
S. P.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
86
94
.
19.
Duelen
,
G.
, and
Schröer
,
K.
,
1991
, “
Robot Calibration—Method and Results
,”
Rob. Comput. Integr. Manuf.
,
8
(
4
), pp.
223
231
.
20.
Borm
,
J. H.
, and
Meng
,
C. H.
,
1991
, “
Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure
,”
Int. J. Rob. Res.
,
10
(
1
), pp.
51
63
.
21.
Sun
,
X. Y.
,
Xie
,
Z. J.
,
Shi
,
W. K.
, and
Zhang
,
J.
,
2012
, “
Error Analysis and Calibration of 6-PSS Parallel Mechanism
,”
Comput. Integr. Manuf. Syst.
,
18
(
12
), pp.
2659
2666
.
22.
Duan
,
X.
,
Qiu
,
Y.
,
Duan
,
Q.
, and
Du
,
J.
,
2014
, “
Calibration and Motion Control of a Cable-Driven Parallel Manipulator Based Triple-Level Spatial Positioner
,”
Adv. Mech. Eng.
,
6
, p.
368018
.
23.
Tadokoro
,
S.
,
Verhoeven
,
R.
,
Hiller
,
M.
, and
Takamori
,
T.
,
1999
, “
A Portable Parallel Manipulator for Search and Rescue at Large-Scale Urban Earthquakes and an Identification Algorithm for the Installation in Unstructured Environments
,”
Proceedings of 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots With High Intelligence and Emotional Quotients
,
Kyongju, South Korea
,
Oct. 17–21
, Vol. 2, pp.
1222
1227
.
24.
Qian
,
S.
,
Bao
,
K.
,
Zi
,
B.
, and
Wang
,
N.
,
2018
, “
Kinematic Calibration of a Cable-Driven Parallel Robot for 3D Printing
,”
Sensors
,
18
(
9
), p.
2898
.
25.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Chetwynd
,
D. G.
,
2002
, “
A Unified Error Model for Tolerance Design, Assembly and Error Compensation of 3-DOF Parallel Kinematic Machines With Parallelogram Struts
,”
CIRP Ann.
,
51
(
1
), pp.
297
301
.
26.
Wu
,
M.
,
Yue
,
X.
,
Chen
,
W.
,
Nie
,
Q.
, and
Zhang
,
Y.
,
2020
, “
Accuracy Analysis and Synthesis of Asymmetric Parallel Mechanism Based on Sobol-QMC
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
21
), pp.
4200
4214
.
27.
Huang
,
T.
,
Bai
,
P.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2016
, “
Tolerance Design and Kinematic Calibration of a Four-Degrees-of-Freedom Pick-and-Place Parallel Robot
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061018
.
28.
Tai-Ke
,
Y.
,
Xi
,
Z.
,
Feng
,
Z.
,
Li-Min
,
Z.
, and
Yong
,
W.
,
2012
, “
Accuracy Synthesis of a 3-RPS Parallel Robot Based on Manufacturing Costs
,”
Proceedings of the 31st Chinese Control Conference
,
Hefei, China
,
July 25–27
, pp.
5168
5172
.
29.
Idá
,
E.
,
Merlet
,
J. P.
, and
Carricato
,
M.
,
2019
, “Automatic Self-Calibration of Suspended Under-Actuated Cable-Driven Parallel Robot Using Incremental Measurements,”
Cable-Driven Parallel Robots. Mechanisms and Machine Science
,
74
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
Cham
, pp.
333
344
.
30.
Schmidt
,
V.
, and
Pott
,
A.
,
2013
, “Implementing Extended Kinematics of a Cable-Driven Parallel Robot in Real-Time,”
Cable-Driven Parallel Robots. Mechanisms and Machine Science
,
12
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
287
298
.
31.
Pott
,
A.
,
2012
, “Influence of Pulley Kinematics on Cable-Driven Parallel Robots,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
, and
M.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
197
204
.
32.
Wang
,
H.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2019
, “
Exact Kinematic Modeling and Identification of Reconfigurable Cable-Driven Robots With Dual-Pulley Cable Guiding Mechanisms
,”
IEEE/ASME Trans. Mech.
,
24
(
2
), pp.
774
784
.
33.
Zi
,
B.
,
Ding
,
H.
,
Wu
,
X.
, and
Kecskemethy
,
A.
,
2014
, “
Error Modeling and Sensitivity Analysis of a Hybrid-Driven Based Cable Parallel Manipulator
,”
Precis. Eng.
,
38
(
1
), pp.
197
211
.
34.
Luo
,
X.
,
Xie
,
F.
,
Liu
,
X. J.
, and
Li
,
J.
,
2019
, “
Error Modeling and Sensitivity Analysis of a Novel 5-Degree-of-Freedom Parallel Kinematic Machine Tool
,”
Proc. Inst. Mech. Eng. B
,
233
(
6
), pp.
1637
1652
.
35.
Li
,
C.
,
Wang
,
T.
,
Hu
,
L.
,
Zhang
,
L.
,
Du
,
H.
,
Wang
,
L.
,
Luan
,
S.
, and
Tang
,
P.
,
2014
, “
Accuracy Analysis of a Robot System for Closed Diaphyseal Fracture Reduction
,”
Int. J. Adv. Rob. Syst.
,
11
(
10
), p.
169
.
36.
Li
,
T.
,
Li
,
F.
,
Jiang
,
Y.
,
Wang
,
H.
, and
Zhang
,
J.
,
2017
, “
Error Modeling and Sensitivity Analysis of a 3-P(Pa)S Parallel Type Spindle Head With Parallelogram Structure
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
).
37.
Ni
,
Y.
,
Zhang
,
B.
,
Sun
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Accuracy Analysis and Design of A3 Parallel Spindle Head
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
239
249
.
38.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Effect of Actuation Errors on a Purely-Translational Spatial Cable-Driven Parallel Robot
,”
Proceedings of IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
,
Suzhou, China
,
July 29–Aug. 2
, pp.
701
707
.
39.
Yao
,
R.
,
Zhu
,
W.
, and
Huang
,
P.
,
2013
, “
Accuracy Analysis of Stewart Platform Based on Interval Analysis Method
,”
Chin. J. Mech. Eng.
,
26
(
1
), pp.
29
34
.
40.
Moore
,
R. E.
,
1979
,
Methods and Applications of Interval Analysis
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
41.
Hansen
,
E.
, and
Walster
,
G. W.
,
2003
,
Global Optimization Using Interval Analysis: Revised and Expanded
,
CRC Press
,
Los Angeles, CA
, p.
264
.
42.
Merlet
,
J. P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
235
.
43.
Childs
,
P. R. N.
,
2018
,
Mechanical Design Engineering Handbook
,
Butterworth-Heinemann
,
Oxford, UK
.
44.
Maurine
,
P.
, and
Dombre
,
E.
,
1996
, “
A Calibration Procedure for the Parallel Robot Delta 4
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol. 2, pp.
975
980
.
45.
Dong
,
Z.
,
Hu
,
W.
, and
Xue
,
D.
,
1994
, “
New Production Cost-Tolerance Models for Tolerance Synthesis
,”
ASME J. Eng. Ind.
,
116
(
2
), pp.
199
206
.
46.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
.
You do not currently have access to this content.