Abstract

Terrestrial locomotion that is produced by creating and exploiting frictional anisotropy is common amongst animals such as snakes, gastropods, and limbless lizards. In this paper we present a model of a bristlebot that locomotes by generating frictional anisotropy due to the oscillatory motion of an internal mass and show that this is equivalent to a stick–slip Mathieu oscillator. Such vibrational robots have been available as toys and theoretical curiosities and have seen some applications such as the well-known kilobot and in pipe line inspection, but much remains unknown about this type of terrestrial locomotion. In this paper, motivated by a toy model of a bristlebot made from a toothbrush, we derive a theoretical model for its dynamics and show that its dynamics can be classified into four modes of motion: purely stick (no locomotion), slip, stick–slip, and hopping. In the stick mode, the dynamics of the system are those of a nonlinear Mathieu oscillator and large amplitude resonance oscillations lead to the slip mode of motion. The mode of motion depends on the amplitude and frequency of the periodic forcing. We compute a phase diagram that captures this behavior, which is reminiscent of the tongues of instability seen in a Mathieu oscillator. The broader result that emerges in this paper is that mobile limbless continuum or soft robots can exploit high-frequency parametric oscillations to generate fast and efficient terrestrial motion.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), p.
101
.
2.
Rafsanjani
,
A.
,
Zhang
,
Y.
,
Liu
,
B.
,
Rubinstein
,
S. M.
, and
Bertoldi
,
K.
,
2018
, “
Kirigami Skins Make a Simple Soft Actuator Crawl
,”
Sci. Rob.
,
3
(
15
), p.
eaar7555
.
3.
Kotikian
,
A.
,
McMahan
,
C.
,
Davidson
,
E. C.
,
Muhammad
,
J. M.
,
Weeks
,
R. D.
,
Daraio
,
C.
, and
Lewis
,
J. A.
,
2019
, “
Untethered Soft Robotic Matter With Passive Control of Shape Morphing and Propulsion
,”
Sci. Rob.
,
4
(
33
), p.
eaax7044
.
4.
Gilbertson
,
M. D
,
McDonald
,
G.
,
Korinek
,
G.
,
Van de Ven
,
J. D
, and
Kowalewski
,
T. M.
,
2017
, “
Serially Actuated Locomotion for Soft Robots in Tube-Like Environments
,”
IEEE Rob. Auto. Lett.
,
2
(
2
), pp.
1140
1147
.
5.
Verma
,
M. S
,
Ainla
,
A.
,
Yang
,
D.
,
Harburg
,
D.
, and
Whitesides
,
G. M
,
2018
, “
A Soft Tube-Climbing Robot
,”
Soft Rob.
,
5
(
2
), pp.
133
137
.
6.
Singh
,
G.
,
Patiballa
,
S.
,
Zhang
,
X.
, and
Krishnan
,
G.
,
2019
, “
A Pipe-Climbing Soft Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
,
IEEE
,
Silver Spring, MD
, pp.
8450
8456
.
7.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061004
.
8.
Tang
,
Y.
,
Zhang
,
Q.
,
Lin
,
G.
, and
Yin
,
J.
,
2018
, “
Switchable Adhesion Actuator for Amphibious Climbing Soft Robot
,”
Soft Rob.
,
5
(
5
), pp.
592
600
.
9.
Gu
,
G.
,
Zou
,
J.
,
Zhao
,
R.
,
Zhao
,
X.
, and
Zhu
,
X.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Rob.
,
3
(
25
), p.
2874
.
10.
Ashwin
,
K. P.
, and
Ghosal
,
A.
,
2019
, “
A Soft-Robotic End-Effector for Independently Actuating Endoscopic Catheters
,”
ASME J. Mech. Rob.
,
16
(
11
), p.
061004
.
11.
Tang
,
K. K.
,
Li
,
E.
,
House
,
K.
,
Zhu
,
R.
,
Fountain
,
E. L.
,
Agogino
,
K.
,
Agogino
,
A. M.
,
Sunspiral
,
A.
,
Chen
,
V.
,
Chen
,
L. H.
, and
Jung
,
E.
,
2017
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME J. Mech. Rob.
,
2
(
9
), p.
025001
.
12.
Hoang
,
P. H.
,
Nguyen
,
P. T.
,
Jung
,
T. D.
,
Nguyen
,
H.
,
Nguyen
,
C. T.
, and
Choi
,
H. R.
,
2018
, “
Development of An Insect-Inspired Hexapod Robot Actuated by Soft Actuators
,”
ASME J. Mech. Rob.
,
6
(
10
), p.
061016
.
13.
Hu
,
D. L.
,
Nirody
,
J.
,
Scott
,
T.
, and
Shelley
,
M. J.
,
2009
, “
The Mechanics of Slithering Locomotion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
25
(
100
), pp.
10081
10085
.
14.
Guo
,
Z. V.
, and
Mahadevan
,
L.
,
2008
, “
Limbless Undulatory Propulsion on Land
,”
Proc. Natl. Acad. Sci. U. S. A.
,
9
(
105
), pp.
3179
3184
.
15.
Astleya
,
H. C.
,
Gongb
,
C.
,
Daib
,
J.
,
Travers
,
M.
,
Serranoa
,
M. M.
,
Velaa
,
P. A.
,
Choset
,
H.
,
Mendelson III
,
J. R.
,
Hua
,
D. L.
, and
Goldman
,
D. I.
,
2015
, “
Modulation of Orthogonal Body Waves Enables High Maneuverability in Sidewinding Locomotion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
19
(
112
), pp.
6200
6205
.
16.
Vartholomeos
,
P.
, and
Papadopoulos
,
E.
,
2006
, “
Analysis, Design and Control of a Planar Micro-robot Driven by Two Centripetal-Force Actuators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
.
17.
Zimmermann
,
K.
,
Zeidis
,
I.
,
Bolotnik
,
N.
, and
Pivovarov
,
M.
,
2009
, “
Dynamics of a Two-Module Vibration-Driven System Moving Along a Rough Horizontal Plane
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
199
219
.
18.
Rubenstein
,
M.
,
Ahler
,
C.
, and
Kilobot
,
R. N.
,
2012
, “
A Low Cost Scalable Robot System for Collective Behaviors
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Brisbane, Australia
,
May 21–26
.
19.
Weston-Dawkes
,
W. P.
,
Ong
,
A. C.
,
Majit
,
M. R. A
,
Joseph
,
F.
, and
Tolley
,
M. T.
,
2017
, “
Towards Rapid Mechanical Customization of Cm-scale Self-folding Agents
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
.
20.
Becker
,
F.
,
Boerner
,
S.
,
Lysenko
,
V.
,
Zeidis
,
I.
, and
Zimmermann
,
K.
,
2014
, “
On the Mechanics of Bristle-Bots — Modeling, Simulation and Experiments
,” ISR/Robotik 2014;
41st International Symposium on Robotics
,
Munich, Germany
,
June 2–3
, pp.
1
6
.
21.
Giomi
,
L.
,
Hawley-Weld
,
N.
, and
Mahadevan
,
L.
,
2013
, “
Swarming, Swirling and Stasis in Sequestered Bristle-Bots
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
469
(
2151
), p.
0637
.
22.
Chernous’ko
,
F. L.
,
2005
, “
On the Motion of a Body Containing a Movable Internal Mass
,”
Dokl. Phys.
,
50
, pp.
593
597
.
23.
Chernous’ko
,
F. L.
,
2008
, “
On the Optimal Motion of a Body with An Internal Mass in a Resistive Medium
,”
J. Vib. Control
,
1–2
(
14
), pp.
197
208
.
24.
Hong-bin
,
F.
, and
Xu
,
J.
,
2011
, “
Dynamics of a Mobile System With An Internal Acceleration-Controlled Mass in a Resistive Medium
,”
J. Sound. Vib.
,
330
(
16
), pp.
4002
4018
.
25.
Gandra
,
C.
, and
Tallapragada
,
P.
,
2019
, “
Dynamics of a Vibration Driven Bristlebot
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
,
ASME
,
New York
, p. V002T27A004.
26.
Kovacic
,
I.
,
Rand
,
R.
, and
Shah
,
S. M.
,
2018
, “
Mathieu’s Equation and Its Generalizations: Overview of Stability Charts and Their Features
,”
ASME Appl. Mech. Rev.
,
70
(
2
), p.
020802
.
27.
Nayfeh
,
A.
,
1993
,
Introduction to Perturbation Techniques
, 1st ed.,
Wiley-VCH
.
28.
Rand
,
R.
,
2005
, Lecture Notes on Nonlinear Vibrations.
29.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Resonances of a Forced Mathieu Equation With Reference to Wind Turbine Blades
,”
ASME J. Vib. Accoust.
,
134
(
6
), p.
064501
.
You do not currently have access to this content.