Abstract

Continuous constraint satisfaction is prevalent in many science and engineering fields. When solving continuous constraint satisfaction problems, it is more advantageous for practitioners to derive all feasible regions (i.e., the solution space) rather than a limited number of solution points, since these feasible regions facilitate design concept generation and design tradeoff evaluation. Several central processing unit (CPU)-based branch-and-prune methods and geometric approximation methods have been proposed in prior research to derive feasible regions for continuous constraint satisfaction problems. However, these methods have not been extensively adopted in practice, mainly because of their high computational expense. To overcome the computational bottleneck of extant CPU-based methods, this paper introduces a GPU-based parallel region classification method to derive feasible regions for continuous constraint satisfaction problems in a reasonable computational time. Using interval arithmetic, coupled with the computational power of GPU, this method iteratively partitions the design space into many subregions and classifies these subregions as feasible, infeasible, and indeterminate regions. To visualize these classified regions in the design space, a planar visualization approach that projects all classified regions into one figure is also proposed. The GPU-based parallel region classification method and the planar visualization approach are validated through two case studies about the bird function and the welded beam design. These case studies show that the method and the approach can solve the continuous constraint satisfaction problems and visualize the results effectively and efficiently. A four-step procedure for implementing the method and the approach in practice is also outlined.

References

1.
Arróyave
,
R.
,
Gibbons
,
S.
,
Galvan
,
E.
, and
Malak
,
R.
,
2016
, “
The Inverse Phase Stability Problem as a Constraint Satisfaction Problem: Application to Materials Design
,”
JOM
,
68
(
5
), pp.
1385
1395
.
2.
Swaney
,
R. E.
, and
Grossmann
,
I. E.
,
1985
, “
An Index for Operational Flexibility in Chemical Process Design. Part I: Formulation and Theory
,”
AIChE J.
,
31
(
4
), pp.
621
630
.
3.
Malan
,
S.
,
Milanese
,
M.
, and
Taragna
,
M.
,
1997
, “
Robust Analysis and Design of Control Systems Using Interval Arithmetic
,”
Automatica
,
33
(
7
), pp.
1363
1372
.
4.
Yvars
,
P.-A.
,
2008
, “
Using Constraint Satisfaction for Designing Mechanical Systems
,”
Int. J. Interact. Des. Manuf.
,
2
(
3
), pp.
161
167
.
5.
Galvan
,
E.
,
Malak
,
R. J.
,
Gibbons
,
S.
, and
Arroyave
,
R.
,
2017
, “
A Constraint Satisfaction Algorithm for the Generalized Inverse Phase Stability Problem
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011401
.
6.
Larson
,
B. J.
, and
Mattson
,
C. A.
,
2012
, “
Design Space Exploration for Quantifying a System Model’s Feasible Domain
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041010
.
7.
Simpson
,
T. W.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
8.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
9.
Devanathan
,
S.
, and
Ramani
,
K.
,
2010
, “
Creating Polytope Representations of Design Spaces for Visual Exploration Using Consistency Techniques
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081011
.
10.
Gelle
,
E.
,
Faltings
,
B. V.
,
Clément
,
D. E.
, and
Smith
,
I. F.
,
2000
, “
Constraint Satisfaction Methods for Applications in Engineering
,”
Eng. Comput.
,
16
(
2
), pp.
81
95
.
11.
Lottaz
,
C.
,
Clément
,
D. E.
,
Faltings
,
B. V.
, and
Smith
,
I. F.
,
1999
, “
Constraint-Based Support for Collaboration in Design and Construction
,”
J. Comput. Civ. Eng.
,
13
(
1
), pp.
23
35
.
12.
Granvilliers
,
L.
, and
Benhamou
,
F.
,
2006
, “
Algorithm 852: Realpaver: An Interval Solver Using Constraint Satisfaction Techniques
,”
ACM Trans. Math. Softw.
,
32
(
1
), pp.
138
156
.
13.
Vu
,
X. H.
,
2005
, “
Rigorous Solution Techniques for Numerical Constraint Satisfaction Problems
,”
Ph.D. thesis
,
Department of Computer Science, EPFL
,
Lausanne, Switzerland
.
14.
Ratschan
,
S.
,
2006
, “
Efficient Solving of Quantified Inequality Constraints Over the Real Numbers
,”
ACM Trans. Comput. Log.
,
7
(
4
), pp.
723
748
.
15.
Hu
,
J.
,
Aminzadeh
,
M.
, and
Wang
,
Y.
,
2014
, “
Searching Feasible Design Space by Solving Quantified Constraint Satisfaction Problems
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031002
.
16.
Sam-Haroud
,
D.
, and
Faltings
,
B.
,
1996
, “
Consistency Techniques for Continuous Constraints
,”
Constraints
,
1
(
1
), pp.
85
118
.
17.
Vu
,
X. H.
,
Sam-Haroud
,
D.
, and
Silaghi
,
M.-C.
,
2002
, “Numerical Constraint Satisfaction Problems With Non-Isolated Solutions,”
Global Optimization and Constraint Satisfaction. COCOS 2002. Lecture Notes in Computer Science
, Vol.
2861
,
C
Bliek
,
C
Jermann
, and
A
Neumaier
, eds.,
Springer
,
Berlin, Heidelberg, Germany
.
18.
Goldsztejn
,
A.
, and
Granvilliers
,
L.
,
2010
, “
A New Framework for Sharp and Efficient Resolution of NCSP With Manifolds of Solutions
,”
Constraints
,
15
(
2
), pp.
190
212
.
19.
Owens
,
J. D.
,
Houston
,
M.
,
Luebke
,
D.
,
Green
,
S.
,
Stone
,
J. E.
, and
Phillips
,
J. C.
,
2008
, “
GPU Computing
,”
Proc. IEEE
,
96
(
5
), pp.
879
899
.
20.
Apt
,
K.
,
2003
,
Principles of Constraint Programming
,
Cambridge University Press
,
Cambridge, UK
.
21.
Tsang
,
E.
,
1993
,
Foundations of Constraint Satisfaction
,
Academic Press
,
London
.
22.
Rossi
,
F.
,
Van Beek
,
P.
, and
Walsh
,
T.
,
2006
,
Handbook of Constraint Programming
,
Elsevier
,
Amsterdam, The Netherlands
.
23.
Kumar
,
V.
,
1992
, “
Algorithms for Constraint-Satisfaction Problems: A Survey
,”
AI Mag.
,
13
(
1
), pp.
32
32
.
24.
Brailsford
,
S. C.
,
Potts
,
C. N.
, and
Smith
,
B. M.
,
1999
, “
Constraint Satisfaction Problems: Algorithms and Applications
,”
Eur. J. Oper. Res.
,
119
(
3
), pp.
557
581
.
25.
Chaloner
,
K.
, and
Verdinelli
,
I.
,
1995
, “
Bayesian Experimental Design: A Review
,”
Stat. Sci.
,
10
(
3
), pp.
273
304
.
26.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plan. Inference
,
43
(
3
), pp.
381
402
.
27.
Pronzato
,
L.
, and
Müller
,
W. G.
,
2012
, “
Design of Computer Experiments: Space Filling and Beyond
,”
Stat. Comput.
,
22
(
3
), pp.
681
701
.
28.
Hansen
,
E.
, and
Walster
,
G. W.
,
2004
,
Global Optimization Using Interval Analysis
,
Marcel Dekker, Inc.
,
New York
.
29.
Benhamou
,
F.
,
Goualard
,
F.
,
Granvilliers
,
L.
, and
Puget
,
J.
,
1999
, “
Revising Hull and Box Consistency
,”
Logic Programming: Proceedings of the 1999 International Conference on Logic Programming
,
Las Cruces, NM
,
Nov. 29–Dec. 4
,
MIT Press
, pp.
230
244
.
30.
Sam
,
J.
,
1995
, “
Constraint Consistency Techniques for Continuous Domains
,”
Ph.D. thesis
,
Department of Computer Science, EPFL
,
Lausanne, Switzerland
.
31.
Han
,
H.
,
Chang
,
S.
, and
Kim
,
H.
,
2017
, “
A Systematic Approach to Identifying a Set of Feasible Designs
,”
Proceedings of the 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, DETC2017-68003, p.
V02BT03A040
.
32.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA
.
33.
Jaulin
,
L.
,
Kieffer
,
M.
,
Didrit
,
O.
, and
Walter
,
E.
,
2001
,
Applied Interval Analysis
,
Springer-Verlag
,
London, UK
.
34.
IEEE
,
2015
,
1788-2015 Standard for Interval Arithmetic
,
IEEE
,
New York
.
35.
Moore
,
R. E.
,
1962
, “
Interval Arithmetic and Automatic Error Analysis in Digital Computing
,”
Ph.D. thesis
,
Department of Mathematics, Stanford University
,
Stanford, CA
.
36.
IEEE
,
2019
,
754-2019 Standard for Floating-Point Arithmetic
,
IEEE
,
New York
.
37.
Kulisch
,
U. W.
, and
Miranker
,
W. L.
,
1981
,
Computer Arithmetic in Theory and Practice
,
Academic Press
,
New York
.
38.
Ratschek
,
H.
, and
Rokne
,
J.
,
1984
,
Computer Methods for the Range of Functions
,
Halsted Press
,
New York
.
39.
Rokne
,
J. G.
,
1986
, “
Low Complexity k-Dimensional Centered Forms
,”
Computing
,
37
(
3
), pp.
247
253
.
40.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge, UK
.
41.
Jamil
,
M.
, and
Yang
,
X.
,
2013
, “
A Literature Survey of Benchmark Functions for Global Optimisation Problems
,”
Int. J. Math. Model. Numer. Optim.
,
4
(
2
), pp.
150
194
.
42.
Ragsdell
,
K.
, and
Phillips
,
D.
,
1976
, “
Optimal Design of a Class of Welded Structures Using Geometric Programming
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
1021
1025
.
43.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
John Wiley & Sons
,
Hoboken, NJ
.
44.
Coello
,
C. A. C.
,
2000
, “
Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems
,”
Comput. Ind.
,
41
(
2
), pp.
113
127
.
You do not currently have access to this content.