Abstract

In this paper, a generalized method for error modeling of the spatial 1T2R three degrees-of-freedom kinematically redundant parallel mechanism with a closed-loop chain is proposed, which is based on the matrix differential method. First, the detailed process of generalized error modeling and error analysis are described. Based on the proposed method, the error model of the spatial 3PRR(RR)S-P (P—prismatic joint, R—revolute joint, S—spherical joint, and the underline indicates that the joint is the actuator) kinematically redundant parallel mechanism is established as an example, and the correctness of the error model is verified by combining forward with inverse kinematics. Then, the patterns affecting the output error of the moving platform are discussed for the case where the mechanism contains only static error or dynamic error, respectively. In addition, the error sensitivity indices are defined to evaluate the error sensitivity of the moving platform to different redundant parameters L4 under a certain pose. Finally, in order to identify the key error terms, the sensitivity of the output error of the mechanism to a single error term is analyzed. The results show that the error sensitivity of the spatial kinematically redundant parallel mechanism can be effectively reduced by adjusting the kinematically redundant parameters, so that the mechanism can maintain a low error sensitivity in a certain pose.

References

1.
Xue
,
Y.
,
Qu
,
H.
,
Li
,
X.
, and
Guo
,
S.
,
2023
, “
Stiffness Performance Analysis of a 3-PRPS Kinematically Redundant Parallel Mechanism
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
237
(
3
), pp.
589
602
.
2.
Xie
,
Z.
,
Xie
,
F.
,
Zhu
,
L.
, and
Liu
,
X.
,
2022
, “
Robotic Mobile and Mirror Milling of Large-Scale Complex Structures
,”
Natl. Sci. Rev.
,
10
(
5
), p.
nwac188
.
3.
Meng
,
Q.
,
Xie
,
F.
, and
Liu
,
X.
,
2018
, “
Conceptual Design and Kinematic Analysis of a Novel Parallel Robot for High-Speed Pick-and-Place Operations
,”
Front. Mech. Eng.
,
13
(
2
), pp.
211
224
.
4.
Stewart
,
D.
,
2016
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
5.
Dehghani
,
M.
,
Mohammadi Moghaddam
,
M.
, and
Torabi
,
P.
,
2018
, “
Analysis, Optimization and Prototyping of a Parallel RCM Mechanism of a Surgical Robot for Craniotomy Surgery
,”
Ind. Robot
,
45
(
1
), pp.
78
88
.
6.
Neumann
,
K.
, “Adaptive In-Jig High Load Exechon Machining Technology & Assembly.”
7.
Gosselin
,
C.
, and
Schreiber
,
L.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
8.
Cui
,
H.
,
Zhu
,
Z.
,
Gan
,
Z.
, and
Brogardh
,
T.
,
2005
, “
Kinematic Analysis and Error Modeling of TAU Parallel Robot
,”
Rob. Comput. Integr. Manuf.
,
21
(
6
), pp.
497
505
.
9.
Wang
,
J.
, and
Masory
,
O.
,
1993
, “
On the Accuracy of a Stewart Platform. I. The Effect of Manufacturing Tolerances
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, pp.
114
120
.
10.
Wang
,
S.-M.
, and
Ehmann
,
K. F.
,
2002
, “
Error Model and Accuracy Analysis of a Six-DOF Stewart Platform
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
286
295
.
11.
Binaud
,
N.
,
Caro
,
S.
, and
Wenger
,
P.
,
2010
, “
Sensitivity Comparison of Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1477
1490
.
12.
Zhan
,
Z.
,
Zhang
,
X.
,
Jian
,
Z.
, and
Zhang
,
H.
,
2018
, “
Error Modelling and Motion Reliability Analysis of a Planar Parallel Manipulator With Multiple Uncertainties
,”
Mech. Mach. Theory
,
124
, pp.
55
72
.
13.
Tang
,
T.
,
Chi
,
C.
,
Fang
,
H.
, and
Zhang
,
J.
,
2022
, “
Geometric Error Propagation Model-Based Accuracy Synthesis and Its Application to a 1T2R Parallel Manipulator
,”
ASME J. Mech. Des.
,
144
(
7
), p.
073304
.
14.
Shan
,
X.
, and
Cheng
,
G.
,
2019
, “
Structural Error Identification and Kinematic Accuracy Analysis of a 2(3PUS + S) Parallel Manipulator
,”
Measurement
,
140
(
9
), pp.
22
28
.
15.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2005
, “
Sensitivity Analysis of the Orthoglide: A Three-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
392
402
.
16.
Yuan
,
X.
,
Meng
,
Q.
,
Xie
,
F.
,
Liu
,
X.
, and
Wang
,
J.
,
2023
, “
Error Modeling and Accuracy Evaluation of Parallel Manipulators With Mixed DOFs Based on Motion/Force Transmissibility and Constrainability
,”
Mech. Mach. Theory
,
186
, p.
105346
.
17.
Zhang
,
J.
,
Lian
,
B.
, and
Song
,
Y.
,
2019
, “
Geometric Error Analysis of an Over-Constrained Parallel Tracking Mechanism Using the Screw Theory
,”
Chin. J. Aeronaut.
,
32
(
6
), pp.
1541
1554
.
18.
Frisoli
,
A.
,
Solazzi
,
M.
,
Pellegrinetti
,
D.
, and
Bergamasco
,
M.
,
2011
, “
A New Screw Theory Method for the Estimation of Position Accuracy in Spatial Parallel Manipulators With Revolute Joint Clearances
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1929
1949
.
19.
Tian
,
W.
,
Shen
,
Z.
,
Lv
,
D.
, and
Yin
,
F.
,
2020
, “
A Systematic Approach for Accuracy Design of Lower-Mobility Parallel Mechanism
,”
Robotica
,
38
(
12
), pp.
2173
2188
.
20.
Tannous
,
M.
,
Caro
,
S.
, and
Goldsztejn
,
A.
,
2014
, “
Sensitivity Analysis of Parallel Manipulators Using an Interval Linearization Method
,”
Mech. Mach. Theory
,
71
, pp.
93
114
.
21.
Chebbi
,
A.
,
Chouaibi
,
Y.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2018
, “
Sensitivity Analysis and Prediction of the Orientation Error of a Three Translational Parallel Manipulator
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
232
(
1
), pp.
140
161
.
22.
Guo
,
S.
,
Wang
,
N.
,
Fang
,
Y.
, and
Li
,
X.
,
2011
, “
Error Sensitivity of 3-UPU Parallel Manipulator Based on Probability Distribution
,”
Chin. J. Mech. Eng.
,
47
(
21
), pp.
14
21
.
23.
Cai
,
S.
,
Peng
,
L.
, and
Huang
,
W.
,
2013
, “
Error Analysis of a 2-PRS/2-UPS 4-DOF Parallel Platform
,”
Advanced Materials Research
,
605-607
, pp.
1511
1514
. www.scientific.net/AMR.605-607.1511
24.
Wu
,
G.
,
Bai
,
S.
,
Kepler
,
J.
, and
Caro
,
S.
,
2012
, “
Error Modeling and Experimental Validation of a Planar 3-PPR Parallel Manipulator With Joint Clearances
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041008
.
25.
Zhuang
,
X.
,
2022
, “
Time-Dependent Kinematic Reliability of a Dual-Axis Driving Mechanism for Satellite Antenna Considering Non-Uniform Planar Revolute Joint Clearance
,”
Acta Astronaut.
,
197
, pp.
91
106
.
26.
Chen
,
Y.
,
Xie
,
F.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2014
, “
Error Modeling and Sensitivity Analysis of a Parallel Robot With SCARA(Selective Compliance Assembly Robot Arm) Motions
,”
Chin. J. Mech. Eng.
,
27
(
4
), pp.
693
702
.
27.
Kotlarski
,
J.
,
Abdellatif
,
H.
, and
Heimann
,
B.
,
2008
, “
Improving the Pose Accuracy of a Planar 3RRR Parallel Manipulator Using Kinematic Redundancy and Optimized Switching Patterns
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 9–13
, pp.
3863
3868
.
28.
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2011
, “
Experimental Validation of the Influence of Kinematic Redundancy on the Pose Accuracy of Parallel Kinematic Machines
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1923
1929
.
29.
Li
,
G.
,
Qu
,
H.
, and
Guo
,
S.
,
2020
, “
Sensitivity Analysis of a Planar Parallel Manipulator With Kinematic Redundancy
,”
Chin. J. Mech. Eng.
,
56
(
23
), pp.
45
57
.
30.
Li
,
X.
,
Qu
,
H.
,
Li
,
G.
,
Guo
,
S.
, and
Dong
,
G.
,
2023
, “
Optimal Design of a Kinematically Redundant Planar Parallel Mechanism Based on Error Sensitivity and Workspace
,”
ASME J. Mech. Des.
,
145
(
2
), p.
023305
.
31.
Zeng
,
C.-D.
,
Qiu
,
Z.-C.
,
Zhang
,
F.-H.
, and
Zhang
,
X.-M.
,
2023
, “
Error Modelling and Motion Reliability Analysis of a Multi-DOF Redundant Parallel Mechanism With Hybrid Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
235
(
3
), p.
109259
.
32.
Qu
,
H.
, and
Guo
,
S.
,
2016
, “Topology and Mobility Variations of a Novel Redundant Reconfigurable Parallel Mechanism,”
Advances in Reconfigurable Mechanisms and Robots II
, Vol.
36
,
X.
Ding
,
X.
Kong
, and
J.
Dai
, eds.,
Springer, Cham
,
Switzerland
, pp.
223
233
.
33.
Shen
,
C.
,
Qu
,
H.
,
Guo
,
S.
, and
Li
,
X.
,
2021
, “
Kinematics Analysis and Singularity Avoidance of a Parallel Mechanism With Kinematic Redundancy
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
113
.
34.
Qu
,
H.
,
Guo
,
S.
, and
Zhang
,
Y.
,
2017
, “
A Novel Relative Degree-of-Freedom Criterion for a Class of Parallel Manipulators With Kinematic Redundancy and Its Applications
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
22
), pp.
4227
4240
.
You do not currently have access to this content.