Abstract

Additive manufacturing enables the fabrication of multi-lattice structures, an advanced design approach featuring heterogeneous lattices at the mesoscale which are arranged to achieve a diverse and purposeful distribution of material properties at the macroscale. Compared to uniform lattice structures, multi-lattice structures permit greater design freedom and a larger design space, which makes it possible to achieve superior structure performance. However, the expanded design space introduces a substantial increase in the complexity that must be managed in order to achieve a multi-lattice structure solution. However, there is a lack of design automation approaches that can tractably create multi-lattice structures. This article introduces an innovative multi-scale topology optimization (TO) framework, called multi-lattice topology optimization with variational autoencoder (MulaTOVA), that is capable of concurrently addressing macro- and mesoscale design requirements. Neural networks (NNs) are employed in this framework to jointly represent the structural topology at the macroscale and the lattice heterogeneity at the mesoscale, enabling simultaneous optimization through the updating of the NNs’ weights. The connectivity between lattices is implicitly constrained by constraining the NNs, while the diversity of the lattices is guaranteed through a generative lattice model which is trained over a large lattice dataset. The performances of various NN types are compared, and Fourier neural operators (FNOs) demonstrated the best flexibility in balancing lattice diversity and local connectivity. Furthermore, our results show that the multi-lattice TO structures achieve a higher stiffness-to-weight ratio than solid TO structures.

References

1.
Wilson
,
G. H.
,
Ge
,
J.
,
Aviation
,
C.
, and
Ge
,
A.
,
2014
, “
The GE Aircraft Engine Bracket Challenge: An Experiment in Crowdsourcing for Mechanical Design Concepts
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
.
2.
Hanks
,
B.
,
Berthel
,
J.
,
Frecker
,
M.
, and
Simpson
,
T. W.
,
2020
, “
Mechanical Properties of Additively Manufactured Metal Lattice[Q8] Structures: Data Review and Design Interface
,”
Addit. Manuf.
,
35
, p.
101301
.
3.
Plocher
,
J.
, and
Panesar
,
A.
,
2020
, “
Effect of Density and Unit Cell Size Grading on the Stiffness and Energy Absorption of Short Fibre-Reinforced Functionally Graded Lattice Structures
,”
Addit. Manuf.
,
33
, p.
101171
.
4.
Kantareddy
,
S. N. R.
,
Roh
,
B. M.
,
Simpson
,
T. W.
,
Joshi
,
S.
,
Dickman
,
C.
, and
Lehtihet
,
E. A.
,
2016
, “
Saving Weight with Metallic Lattice Structures: Design Challenges with a Real-World Example
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
.
5.
Rossiter
,
J. D.
,
Johnson
,
A. A.
, and
Bingham
,
G. A.
,
2020
, “
Assessing the Design and Compressive Performance of Material Extruded Lattice Structures
,”
3D Print. Addit. Manuf.
,
7
(
1
), pp.
19
27
.
6.
Lozanovski
,
B.
,
Downing
,
D.
,
Tino
,
R.
,
Tran
,
P.
,
Shidid
,
D.
,
Emmelmann
,
C.
,
Qian
,
M.
,
Choong
,
P.
,
Brandt
,
M.
, and
Leary
,
M.
,
2021
, “
Image-Based Geometrical Characterization of Nodes in Additively Manufactured Lattice Structures
,”
3D Print. Addit. Manuf.
,
8
(
1
), pp.
51
68
.
7.
Niknam
,
H.
, and
Akbarzadeh
,
A. H.
,
2020
, “
Graded Lattice Structures: Simultaneous Enhancement in Stiffness and Energy Absorption
,”
Mater. Des.
,
196
.
8.
Li
,
D.
,
Dai
,
N.
,
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
.
9.
Wang
,
Y.
,
Zhang
,
L.
,
Daynes
,
S.
,
Zhang
,
H.
,
Feih
,
S.
, and
Wang
,
M. Y.
,
2018
, “
Design of Graded Lattice Structure With Optimized Mesostructures for Additive Manufacturing
,”
Mater. Des.
,
142
, pp.
114
123
.
10.
Goel
,
A.
, and
Anand
,
S.
,
2019
, “
Design of Functionally Graded Lattice Structures Using B-Splines for Additive Manufacturing
,”
Procedia Manuf.
,
34
, pp.
655
665
.
11.
Maskery
,
I.
,
Hussey
,
A.
,
Panesar
,
A.
,
Aremu
,
A.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
An Investigation Into Reinforced and Functionally Graded Lattice Structures
,”
J. Cellular Plast.
,
53
(
2
), pp.
151
165
.
12.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
13.
Gok
,
M. G.
,
2021
, “
Creation and Finite-Element Analysis of Multi-lattice Structure Design in Hip Stem Implant to Reduce the Stress-Shielding Effect
,”
Mater. Des. Appl.
,
236
(
2
), pp.
429
439
.
14.
Kang
,
D.
,
Park
,
S.
,
Son
,
Y.
,
Yeon
,
S.
,
Kim
,
S. H.
, and
Kim
,
I.
,
2019
, “
Multi-lattice Inner Structures for High-Strength and Light-Weight in Metal Selective Laser Melting Process
,”
Mater. Des.
,
175
, p.
107786
.
15.
Sahariah
,
B. J.
,
Namdeo
,
A.
, and
Khanikar
,
P.
,
2022
, “
Composite-Inspired Multilattice Metamaterial Structure: An Auxetic Lattice Design With Improved Strength and Energy Absorption
,”
Mater. Today Commun.
,
30
, p.
103159
.
16.
Wang
,
C.
,
Zhu
,
J. H.
,
Zhang
,
W. H.
,
Li
,
S. Y.
, and
Kong
,
J.
,
2018
, “
Concurrent Topology Optimization Design of Structures and Non-uniform Parameterized Lattice Microstructures
,”
Struct. Multidiscipl. Optim.
,
58
, pp.
35
50
.
17.
Chibinyani
,
M.
,
Dzogbewu
,
T. C.
,
Maringa
,
M.
, and
Muiruri
,
A.
,
2023
, “
A Review of the Types and Tessellation of Lattice Structures, Their Effectiveness and Limitations in Mimicking Natural Cellular Structures
,”
The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI
,
Pretoria, South Africa
,
Oct. 30–Nov. 2
.
18.
Wang
,
L.
,
Beek
,
A. V.
,
Da
,
D.
,
Chan
,
Y.-C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2022
, “
Data-Driven Multiscale Design of Cellular Composites With Multiclass Microstructures for Natural Frequency Maximization
,”
Compos. Struct.
,
280
, p.
114949
.
19.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.
20.
Baldwin
,
M.
, and
McComb
,
C.
,
2024
, “
Criteria-Based Evaluation of Multi-Lattice Structure Design Methods
,”
The 36th International Solid Freeform Fabrication Symposium
,
Austin,TX
,
Aug. 11–14
.
21.
Chan
,
Y. C.
,
Da
,
D.
,
Wang
,
L.
, and
Chen
,
W.
,
2022
, “
Remixing Functionally Graded Structures: Data-Driven Topology Optimization With Multiclass Shape Blending
,”
Struct. Multidiscipl. Optim.
,
65
, pp.
1
22
.
22.
Wu
,
Z.
,
Fan
,
F.
,
Xiao
,
R.
, and
Yu
,
L.
,
2020
, “
The Substructuring-Based Topology Optimization for Maximizing the First Eigenvalue of Hierarchical Lattice Structure
,”
Int. J. Numer. Methods Eng.
,
121
, pp.
2964
2978
.
23.
Zhou
,
H.
,
Zhu
,
J.
,
Wang
,
C.
,
Zhang
,
Y.
,
Wang
,
J.
, and
Zhang
,
W.
,
2022
, “
Hierarchical Structure Optimization With Parameterized Lattice and Multiscale Finite Element Method
,”
Struct. Multidiscipl. Optim.
,
65
, pp.
1
20
.
24.
Sanders
,
E. D.
,
Pereira
,
A.
, and
Paulino
,
G.
,
2021
, “
Optimal and Continuous Multilattice Embedding
,”
Sci. Adv.
,
7
(
16
), p.
4838
.
25.
Wang
,
J.
,
Chen
,
W. W.
,
Da
,
D.
,
Fuge
,
M.
, and
Rai
,
R.
,
2022
, “
Ih-gan: A Conditional Generative Model for Implicit Surface-Based Inverse Design of Cellular Structures
,”
Comput. Methods Appl. Mech. Eng.
,
396
, p.
115060
.
26.
Wang
,
L.
,
Chan
,
Y.-C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-Driven Metamaterial Design With Laplace-Beltrami Spectrum as “shape-DNA”
,”
Struct. Multidiscipl. Optim.
,
61
, pp.
2613
2628
.
27.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
.
28.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures
,”
Mater. Des.
,
183
, p.
108164
.
29.
Chandrasekhar
,
A.
,
Sridhara
,
S.
, and
Suresh
,
K.
,
2023
, “
Graded Multiscale Topology Optimization Using Neural Networks
,”
Adv. Eng. Softw.
,
175
, p.
103359
.
30.
Jin
,
Q. Y.
,
Yu
,
J. H.
,
Ha
,
K. S.
,
Lee
,
W. J.
, and
Park
,
S. H.
,
2021
, “
Multi-dimensional Lattices Design for Ultrahigh Specific Strength Metallic Structure in Additive Manufacturing
,”
Mater. Des.
,
201
, p.
109479
.
31.
Ozdemir
,
M.
,
Simsek
,
U.
,
Kiziltas
,
G.
,
Gayir
,
C. E.
,
Celik
,
A.
, and
Sendur
,
P.
,
2023
, “
A Novel Design Framework for Generating Functionally Graded Multi-morphology Lattices Via Hybrid Optimization and Blending Methods
,”
Addit. Manuf.
,
70
, p.
103560
.
32.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,”
International Conference on Learning Representations
,
Scottsdale, AZ
,
May 2–4
.
33.
Rozvany
,
G. I. N.
,
2001
, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Struct. Multidiscipl. Optim.
,
21
, pp.
90
108
.
34.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
, pp.
635
654
.
35.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
36.
Wei
,
P.
,
Wang
,
W.
,
Yang
,
Y.
, and
Wang
,
M. Y.
,
2020
, “
Level Set Band Method: A Combination of Density-Based and Level Set Methods for the Topology Optimization of Continuums
,”
Front. Mech. Eng.
,
15
, pp.
390
405
.
37.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
38.
Suresh
,
K.
,
2013
, “
Efficient Generation of Large-Scale Pareto-Optimal Topologies
,”
Struct. Multidiscipl. Optim.
,
47
, pp.
49
61
.
39.
Deng
,
S.
, and
Suresh
,
K.
,
2015
, “
Multi-constrained Topology Optimization Via the Topological Sensitivity
,”
Struct. Multidiscipl. Optim.
,
51
, pp.
987
1001
.
40.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2015
, “
A Pareto-Optimal Approach to Multimaterial Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101701
.
41.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
42.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
43.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2021
, “
Real-Time Topology Optimization in 3D Via Deep Transfer Learning
,”
Comput. Aided Des.
,
135
, p.
103014
.
44.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2022
, “
Gantl: Toward Practical and Real-Time Topology Optimization With Conditional Generative Adversarial Networks and Transfer Learning
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021711
.
45.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
TOuNN: Topology Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1135
1149
.
46.
Chen
,
H.
,
Joglekar
,
A.
, and
Burak Kara
,
L.
,
2023
, “
Topology Optimization Using Neural Networks With Conditioning Field Initialization for Improved Efficiency
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
47.
Najmon
,
J.
, and
Tovar
,
A.
,
2024
, “
Evaluation of Neural Network-Based Derivatives for Topology Optimization
,”
ASME J. Mech. Des.
,
146
(
7
), p.
071704
.
48.
Saad
,
Y.
, “
Iterative Methods for Sparse Linear Systems
,”
2003 SIAM International Conference on Data Mining
,
San Francisco, CA
,
May 1–3
.
49.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
50.
Wei
,
N.
,
Ye
,
H.
,
Zhang
,
X.
,
Li
,
J.
, and
Sui
,
Y.
,
2022
, “
Topology Optimization for Design of Hybrid Lattice Structures With Multiple Microstructure Configurations
,”
Acta Mech. Sol. Sin.
,
35
, pp.
367
383
.
51.
Hu
,
J.
,
Luo
,
Y.
, and
Liu
,
S.
,
2021
, “
Two-Scale Concurrent Topology Optimization Method of Hierarchical Structures With Self-connected Multiple Lattice-Material Domains
,”
Compos. Struct.
,
272
, p.
114224
.
52.
Gu
,
X.
,
Song
,
T.
,
Dong
,
Y.
,
Luo
,
Y.
, and
He
,
S.
,
2023
, “
Multiscale Concurrent Topology Optimization for Structures With Multiple Lattice Materials Considering Interface Connectivity
,”
Struct. Multidiscipl. Optim.
,
66
, pp.
1
20
.
53.
Da
,
D.
,
2021
, “
Inverse Homogenization Design of Lattice Structures Without Scale Separation
,”
Structures
,
29
, pp.
796
805
.
54.
Da
,
D.
, and
Xia
,
L.
,
2021
, “
Design of Heterogeneous Mesostructures for Nonseparated Scales and Analysis of Size Effects
,”
Int. J. Numer. Methods Eng.
,
122
(
5
), pp.
1333
1351
.
55.
Ren
,
F.
,
Zhang
,
C.
,
Liao
,
W.
,
Liu
,
T.
,
Li
,
D.
,
Shi
,
X.
,
Jiang
,
W.
, et al.,
2021
, “
Transition Boundaries and Stiffness Optimal Design for Multi-TPMS Lattices
,”
Mater. Des.
,
210
, p.
110062
.
56.
Strm̈berg
,
N.
,
2024
, “
A New Multi-scale Topology Optimization Framework for Optimal Combinations of Macro-layouts and Local Gradings of TPMS-Based Lattice Structures
,”
Mech. Based Des. Struct. Mach.
,
52
(
1
), pp.
257
274
.
57.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
58.
Xue
,
T.
,
Wallin
,
T. J.
,
Menguc
,
Y.
,
Adriaenssens
,
S.
, and
Chiaramonte
,
M.
,
2020
, “
Machine Learning Generative Models for Automatic Design of Multi-material 3D Printed Composite Solids
,”
Extreme Mech. Lett.
,
41
, p.
100992
.
59.
Baldwin
,
M.
,
Meisel
,
N. A.
, and
McComb
,
C.
,
2022
, “
A Data-Driven Approach for Multi-Lattice Transitions
,”
The 33th International Solid Freeform Fabrication Symposium
,
Austin, TX
,
July 25–27
.
60.
Baldwin
,
M.
,
Meisel
,
N. A.
, and
McComb
,
C.
,
2023
, “
Smoothing the Rough Edges: Evaluating Automatically Generated Multi-lattice Transitions
,”
3D Print. Addit. Manuf.
,
11
(
4
), pp.
e1555
e15566
.
61.
Biswas
,
K.
,
Kumar
,
S.
,
Banerjee
,
S.
, and
Pandey
,
A. K.
,
2021
, “
Smooth Maximum Unit: Smooth Activation Function for Deep Networks Using Smoothing Maximum Technique
,”
EEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 18–24
.
62.
Paszke
,
A.
,
Gross
,
S.
,
Chintala
,
S.
,
Chanan
,
G.
,
Yang
,
E.
,
DeVito
,
Z.
,
Lin
,
Z.
,
Desmaison
,
A.
,
Antiga
,
L.
, and
Lerer
,
A.
,
2017
, “
Automatic Differentiation in Pytorch
.”
63.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
arXiv:1412.6980
. https://arxiv.org/abs/1412.6980
64.
Baldwin
,
M.
,
Meisel
,
N. A.
, and
McComb
,
C.
,
2023
, “
AddLat2D the 2D Lattice Generator
,”
Softw. Impacts
,
17
, p.
100567
.
65.
Baldwin
,
M.
,
Meisel
,
N. A.
, and
McComb
,
C.
,
2023
, “
Hybrid Geometry/Property Autoencoders for Multi-Lattice Transitions
,”
the 34th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 14–16
.
66.
Baldwin
,
M.
,
Meisel
,
N. A.
, and
McComb
,
C.
,
2024
, “
Smooth Like Butter: Evaluating Multi-lattice Transitions in Property-Augmented Latent Spaces
,”
3D Printing and Additive Manufacturing
,
11
(
4
).
67.
Xia
,
L.
, and
Breitkopf
,
P.
,
2015
, “
Design of Materials Using Topology Optimization and Energy-Based Homogenization Approach in Matlab Updated Element Density Variable
,”
Struct. Multidiscipl. Optim.
,
52
, pp.
1229
1241
.
68.
Wang
,
Y.
,
Huang
,
H.
,
Rudin
,
C.
, and
Shaposhnik
,
Y.
,
2021
, “
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering T-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
,”
J. Mach. Learn. Res.
,
22
(
201
), pp.
1
73
.
69.
Li
,
Z.
,
Kovachki
,
N. B.
,
Azizzadenesheli
,
K.
,
liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2021
, “
Fourier Neural Operator for Parametric Partial Differential Equations
,”
The Ninth International Conference on Learning Representations
,
Virtual Online
,
May 3–7
.
70.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
, pp.
120
127
.
You do not currently have access to this content.