Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Inspired by natural designs, microstructures exhibit remarkable properties, which drive interest in creating metamaterials with extraordinary traits. However, imperfections within microstructures and poor connectivity at the microscale level can significantly impact their performance and reliability. Achieving proper connectivity between microstructural elements and detecting structural imperfections within the microstructures pose challenges in multiscale design optimization. While using a connectivity index (CI) to quantify the topological connectivity between microstructures has been explored previously, prior approaches have limitations in identifying microstructures with complex curved geometries between adjacent units. To alleviate this issue, we present a novel CI in this study. The proposed CI goes beyond conventional methods by focusing on surface interfaces and internal microstructural irregularities. Through numerical investigations, we successfully connected distinct types of microstructures well by integrating the introduced CI with the functional gradation scheme. We also demonstrate that the presented CI can serve as a metric to identify sharp changes or imperfections within microstructures. We evaluate the performance of the introduced index against other connectivity indices using diverse microstructural examples. Experimental findings provide valuable insights into the fundamental aspects of imperfection detection and rectification in microstructures within the multiscale design, paving the way for developing more robust and reliable materials in engineering applications.

References

1.
Corni
,
I.
,
Harvey
,
T.
,
Wharton
,
J.
,
Stokes
,
K.
,
Walsh
,
F.
, and
Wood
,
R.
,
2012
, “
A Review of Experimental Techniques to Produce a Nacre-Like Structure
,”
Bioinspir. Biomim.
,
7
(
3
), p.
031001
.
2.
Tan
,
T.
,
Rahbar
,
N.
,
Allameh
,
S.
,
Kwofie
,
S.
,
Dissmore
,
D.
,
Ghavami
,
K.
, and
Soboyejo
,
W.
,
2011
, “
Mechanical Properties of Functionally Graded Hierarchical Bamboo Structures
,”
Acta Biomater.
,
7
(
10
), pp.
3796
3803
.
3.
Fernandes
,
M. C.
,
Aizenberg
,
J.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2021
, “
Mechanically Robust Lattices Inspired by Deep-Sea Glass Sponges
,”
Nat. Mater.
,
20
(
2
), pp.
237
241
.
4.
Senhora
,
F. V.
,
Sanders
,
E. D.
, and
Paulino
,
G. H.
,
2022
, “
Optimally-Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing
,”
Adv. Mater.
,
34
(
26
), p.
2109304
.
5.
Pawlyn
,
M.
,
2019
,
Biomimicry in Architecture
,
Routledge
,
London, UK
.
6.
Shalaev
,
V. M.
,
2007
, “
Optical Negative-Index Metamaterials
,”
Nat. Photonics
,
1
(
1
), pp.
41
48
.
7.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Auxetic Behavior From Rotating Squares
,”
J. Mater. Sci. Lett.
,
19
, pp.
1563
1565
.
8.
Chen
,
T.
,
Panetta
,
J.
,
Schnaubelt
,
M.
, and
Pauly
,
M.
,
2021
, “
Bistable Auxetic Surface Structures
,”
ACM Trans. Graph.
,
40
(
4
), pp.
1
9
.
9.
Takezawa
,
A.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2015
, “
Porous Composite With Negative Thermal Expansion Obtained by Photopolymer Additive Manufacturing
,”
APL Mater.
,
3
(
7
), p.
076103
.
10.
Berger
,
J.
,
Wadley
,
H.
, and
McMeeking
,
R.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
.
11.
Fujii
,
D.
,
Chen
,
B.
, and
Kikuchi
,
N.
,
2001
, “
Composite Material Design of Two-Dimensional Structures Using the Homogenization Design Method
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2031
2051
.
12.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsoe
,
M.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscipl. Optim.
,
24
, pp.
1
10
.
13.
Liu
,
L.
,
Yan
,
J.
, and
Cheng
,
G.
,
2008
, “
Optimum Structure With Homogeneous Optimum Truss-Like Material
,”
Comput. Struct.
,
86
(
13–14
), pp.
1417
1425
.
14.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
), p.
1
.
15.
Chen
,
W.
,
Tong
,
L.
, and
Liu
,
S.
,
2017
, “
Concurrent Topology Design of Structure and Material Using a Two-Scale Topology Optimization
,”
Comput. Struct.
,
178
, pp.
119
128
.
16.
Sanders
,
E.
,
Pereira
,
A.
, and
Paulino
,
G.
,
2021
, “
Optimal and Continuous Multilattice Embedding
,”
Sci. Adv.
,
7
(
16
), p.
eabf4838
.
17.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
2011
,
Asymptotic Analysis for Periodic Structures
,
American Mathematical Society
,
Rhode Island
.
18.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
19.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
, pp.
1267
1281
.
20.
Coelho
,
P. G.
,
Fernandes
,
P. R.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2008
, “
A Hierarchical Model for Concurrent Material and Topology Optimisation of Three-Dimensional Structures
,”
Struct. Multidiscipl. Optim.
,
35
, pp.
107
115
.
21.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
.
22.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimisation of Manufacturable Microstructural Details Without Length Scale Separation Using a Spectral Coarse Basis Preconditioner
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
156
182
.
23.
Xie
,
Y. M.
,
Zuo
,
Z. H.
,
Huang
,
X.
, and
Rong
,
J. H.
,
2012
, “
Convergence of Topological Patterns of Optimal Periodic Structures Under Multiple Scales
,”
Struct. Multidiscipl. Optim.
,
46
, pp.
41
50
.
24.
Coelho
,
P.
,
Amiano
,
L.
,
Guedes
,
J.
, and
Rodrigues
,
H.
,
2016
, “
Scale-Size Effects Analysis of Optimal Periodic Material Microstructures Designed by the Inverse Homogenization Method
,”
Comput. Struct.
,
174
, pp.
21
32
.
25.
Dumontet
,
H.
,
1985
, “
Boundary Layers Stresses in Elastic Composites
,”
Stud. Appl. Mech.
,
12
, pp.
215
232
.
26.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3d Printing
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
13
.
27.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
, pp.
5157
5167
.
28.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
, pp.
1503
1510
.
29.
Deng
,
J.
, and
Chen
,
W.
,
2017
, “
Concurrent Topology Optimization of Multiscale Structures With Multiple Porous Materials Under Random Field Loading Uncertainty
,”
Struct. Multidiscipl. Optim.
,
56
, pp.
1
19
.
30.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
84
101
.
31.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2023
, “
Implicitly Represented Architected Materials for Multi-scale Design and High-Resolution Additive Manufacturing
,”
Adv. Mater. Technol.
,
8
(
17
), p.
2300274
.
32.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2022
, “
Multi-scale Topology Optimization With Neural Network-Assisted Optimizer
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
33.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2023
, “
Neural Network-Assisted Design: A Study of Multiscale Topology Optimization With Smoothly Graded Cellular Structures
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011701
.
34.
Von Schnering
,
H.
, and
Nesper
,
R.
,
1991
, “
Nodal Surfaces of Fourier Series: Fundamental Invariants of Structured Matter
,”
Z. für Phys. B Condens. Matter
,
83
(
3
), pp.
407
412
.
35.
Wang
,
J.
, and
Huang
,
J.
,
2022
, “
Functionally Graded Non-periodic Cellular Structure Design and Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031006
.
36.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2021
, “
Two-Scale Topology Optimization With Parameterized Cellular Structures
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
You do not currently have access to this content.