Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Machine-learned surrogate models to accelerate lengthy computer simulations are becoming increasingly important as engineers look to streamline the product design cycle. In many cases, these approaches offer the ability to predict relevant quantities throughout a geometry, but place constraints on the form of the input data. In a world of diverse data types, a preferred approach would not restrict the input to a particular structure. In this paper, we propose topology-agnostic graph U-Net (TAG U-Net), a graph convolutional network that can be trained to input any mesh or graph structure and output a prediction of a target scalar field at each node. The model constructs coarsened versions of each input graph and performs a set of convolution and pooling operations to predict the node-wise outputs on the original graph. By training on a diverse set of shapes, the model can make strong predictions, even for shapes unlike those seen during training. A 3D additive manufacturing dataset is presented, containing laser powder bed fusion simulation results for thousands of parts. The model is demonstrated on this dataset, and it performs well, predicting both 2D and 3D scalar fields with a median R2>0.85 on test geometries.

References

1.
Rankin
,
J. J.
, and
Ott
,
D. A.
,
1992
, “
The Open Approach to FEA Integration in the Design Process
,”
Mechanical Engineering-CIME
,
114
(
9
), p.
70
. link.gale.com/apps/doc/A12800693/AONE
2.
Sahu
,
K.
, and
Grosse
,
I. R.
,
1994
, “
Concurrent Iterative Design and the Integration of Finite Element Analysis Results
,”
Eng. Comput.
,
10
(
4
), pp.
245
257
.
3.
Kaye
,
R. H.
, and
Heller
,
M.
,
1997
,
Structural Shape Optimisation by Iterative Finite Element Solution
,
DSTO Aeronautical and Maritime Research Laboratory
,
Melbourne, Australia
, pp.
1
14
. https://apps.dtic.mil/sti/citations/ADA329922
4.
Huthwaite
,
P.
,
2014
, “
Accelerated Finite Element Elastodynamic Simulations Using the Gpu
,”
J. Comput. Phys.
,
257
(
A
), pp.
687
707
.
5.
Bellet
,
M.
,
Tematio
,
J. K.
, and
Zhang
,
Y.
,
2023
, “
The Inherent Strain Method for Additive Manufacturing: Critical Analysis and New Inherent Strain Rate Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1281
(
1
), p.
012001
.
6.
Dong
,
W.
,
Hinnebusch
,
S.
, and
To
,
A.
,
2024
, “Predicting Recoater Interference in Laser Powder Bed Fusion Process by Considering Both Global Thermal Deformation and Local Edge Deformation Using the Modified Inherent Strain Method,” Available at SSRN 4705352.
7.
Bauer
,
E.
, and
Adams
,
R.
,
2012
,
Reliability and Availability of Cloud Computing
,
John Wiley & Sons
,
Hoboken, NJ
.
8.
Torczon
,
Virginia
, and
Trosset
,
Michael
,
1998
,
Using Approximations to Accelerate Engineering Design Optimization
,
NASA Langley Research Center
,
Hampton, VA
. https://arc.aiaa.org/doi/10.2514/6.1998-4800
9.
Eriksson
,
Martin
, and
Burman
,
Åke
,
2005
, “
Improving the Design Process by Integrating Design Analysis
,”
DS 35: Proceedings ICED 05, the 15th International Conference on Engineering Design
,
Melbourne, Australia
,
Aug. 15–18
, pp.
555
556
.
10.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2019
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
.
11.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2021
, “
StressGAN: A Generative Deep Learning Model for Two-Dimensional Stress Distribution Prediction
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051005
.
12.
Nourbakhsh
,
M.
,
Irizarry
,
J.
, and
Haymaker
,
J.
,
2018
, “
Generalizable Surrogate Model Features to Approximate Stress in 3D Trusses
,”
Eng. Appl. Artif. Intell.
,
71
(
1
), pp.
15
27
.
13.
Whalen
,
E.
, and
Mueller
,
C.
,
2021
, “
Toward Reusable Surrogate Models: Graph-Based Transfer Learning on Trusses
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021704
.
14.
Barmada
,
S.
,
Fontana
,
N.
,
Formisano
,
A.
,
Thomopulos
,
D.
, and
Tucci
,
M.
,
2021
, “
A Deep Learning Surrogate Model for Topology Optimization
,”
IEEE Trans. Magn.
,
57
(
6
), pp.
1
4
.
15.
Khadilkar
,
A.
,
Wang
,
J.
, and
Rai
,
R.
,
2019
, “
Deep Learning-Based Stress Prediction for Bottom-Up SLA 3D Printing Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5
), pp.
2555
2569
.
16.
Chen
,
Y.-H.
,
Kara
,
L. B.
, and
Cagan
,
J.
,
2023
, “
Automating Style Analysis and Visualization With Explainable AI-Case Studies on Brand Recognition
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
87301
,
American Society of Mechanical Engineers
, p.
V03AT03A006
.
17.
Chen
,
Y.-h.
,
Kara
,
L. B.
, and
Cagan
,
J.
,
2024
, “
BIGNET: A Deep Learning Architecture for Brand Recognition With Geometry-Based Explainability
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051701
.
18.
Chen
,
Y.-h.
,
Cagan
,
J.
, and
Kara
,
L. B.
,
2024
, “VIRL: Volume-Informed Representation Learning Towards Few-Shot Manufacturability Estimation”. arXiv preprint arXiv:2406.12286.
19.
Bronstein
,
M. M.
,
Bruna
,
J.
,
LeCun
,
Y.
,
Szlam
,
A.
, and
Vandergheynst
,
P.
,
2017
, “
Geometric Deep Learning: Going Beyond Euclidean Data
,”
IEEE Signal Process. Mag.
,
34
(
4
), pp.
18
42
.
20.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “U-net: Convolutional Networks for Biomedical Image Segmentation”.
21.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “Pointnet: Deep Learning on Point Sets For 3D Classification and Segmentation”.
22.
Qi
,
C. R.
,
Yi
,
L.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”.
23.
Kashefi
,
A.
,
Rempe
,
D.
, and
Guibas
,
L. J.
,
2021
, “
A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries
,”
Phys. Fluids.
,
33
(
2
), p.
027104
.
24.
Boussif
,
O.
,
Bengio
,
Y.
,
Benabbou
,
L.
, and
Assouline
,
D.
,
2022
, “MAgNet: Mesh Agnostic Neural PDE Solver,”
Advances in Neural Information Processing Systems
,
S.
Koyejo
,
S.
Mohamed
,
A.
Agarwal
,
D.
Belgrave
,
K.
Cho
, and
A.
Oh
, eds., Vol.
35
,
Curran Associates, Inc.
, pp.
31972
31985
.
25.
Chen
,
H.
,
Wu
,
R.
,
Grinspun
,
E.
,
Zheng
,
C.
, and
Chen
,
P. Y.
,
2023
, “Implicit Neural Spatial Representations for Time-Dependent PDEs,”
Proceedings of the 40th International Conference on Machine Learning
,
A.
Krause
,
E.
Brunskill
,
K.
Cho
,
B.
Engelhardt
,
S.
Sabato
, and
J.
Scarlett
, eds., Vol.
202
of Proceedings of Machine Learning Research, PMLR, pp.
5162
5177
.
26.
Owen
,
S. J.
, and
White
,
D. R.
,
2003
, “
Mesh-Based Geometry
,”
Int. J. Numer. Methods Eng.
,
58
(
2
), pp.
375
395
.
27.
Wang
,
Y.
,
Sun
,
Y.
,
Liu
,
Z.
,
Sarma
,
S. E.
,
Bronstein
,
M. M.
, and
Solomon
,
J. M.
,
2019
, “Dynamic Graph CNN for Learning on Point Clouds”.
28.
Afazov
,
S.
,
Roberts
,
A.
,
Wright
,
L.
,
Jadhav
,
P.
,
Holloway
,
A.
,
Basoalto
,
H.
,
Milne
,
K.
, and
Brierley
,
N.
,
2022
, “
Metal Powder Bed Fusion Process Chains: An Overview of Modelling Techniques
,”
Progress in Additive Manufacturing
,
7
, pp.
289
314
.
29.
Zhou
,
J.
,
Cui
,
G.
,
Hu
,
S.
,
Zhang
,
Z.
,
Yang
,
C.
,
Liu
,
Z.
,
Wang
,
L.
,
Li
,
C.
, and
Sun
,
M.
,
2020
, “
Graph Neural Networks: A Review of Methods and Applications
,”
AI Open
,
1
(
1
), pp.
57
81
.
30.
Wu
,
Z.
,
Pan
,
S.
,
Chen
,
F.
,
Long
,
G.
,
Zhang
,
C.
, and
Yu
,
P. S.
,
2021
, “
A Comprehensive Survey on Graph Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
1
), pp.
4
24
.
31.
Kipf
,
T. N.
, and
Welling
,
M.
,
2017
, “Semi-Supervised Classification With Graph Convolutional Networks”.
32.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P. W.
,
2021
, “Learning Mesh-Based Simulation With Graph Networks”.
33.
Meyer
,
L.
,
Pottier
,
L.
,
Ribes
,
A.
, and
Raffin
,
B.
,
2021
, “Deep Surrogate For Direct Time Fluid Dynamics”.
34.
Maurizi
,
M.
,
Gao
,
C.
, and
Berto
,
F.
,
2022
, “
Predicting Stress, Strain and Deformation Fields in Materials and Structures With Graph Neural Networks
,”
Sci. Rep.
,
12
(
1
), p.
21834
.
35.
Zhao
,
L.
, and
Akoglu
,
L.
,
2020
, “PAIRNORM: Tackling Oversmoothing In GNNs”.
36.
Li
,
G.
,
Müller
,
M.
,
Thabet
,
A.
, and
Ghanem
,
B.
,
2019
, “DeepGCNs: Can GCNs Go as Deep as CNNs?”.
37.
Li
,
G.
,
Xiong
,
C.
,
Thabet
,
A.
, and
Ghanem
,
B.
,
2020
, “DeeperGCN: All You Need to Train Deeper GCNs”.
38.
Gao
,
H.
, and
Ji
,
S.
,
2019
, “Graph U-Nets”.
39.
Cangea
,
C.
,
Veličković
,
P.
,
Jovanović
,
N.
,
Kipf
,
T.
, and
Liò
,
P.
,
2018
, “Towards Sparse Hierarchical Graph Classifiers”.
40.
Deshpande
,
S.
,
Bordas
,
S. P.
, and
Lengiewicz
,
J.
,
2024
, “
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
,”
Eng. Appl. Artif. Intell.
,
133
(
B
), p.
108055
.
41.
Hanocka
,
R.
,
Hertz
,
A.
,
Fish
,
N.
,
Giryes
,
R.
,
Fleishman
,
S.
, and
Cohen-Or
,
D.
,
2019
, “
MeshCNN: A Network With an Edge
,”
ACM Trans. Graph. (TOG)
,
38
(
4
), pp.
90:1
90:12
. https://dl.acm.org/doi/10.1145/3306346.3322959
42.
Gladstone
,
R. J.
,
Rahmani
,
H.
,
Suryakumar
,
V.
,
Meidani
,
H.
,
D’Elia
,
M.
, and
Zareei
,
A.
,
2024
, “
Mesh-Based GNN Surrogates for Time-Independent PDEs
,”
Sci. Rep.
,
14
(
1
), p.
3394
.
43.
Klokov
,
R.
, and
Lempitsky
,
V.
,
2017
, “Escape From Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models”.
44.
Li
,
C.
,
Denlinger
,
E. R.
,
Gouge
,
M. F.
,
Irwin
,
J. E.
, and
Michaleris
,
P.
,
2019
, “
Numerical Verification of an Octree Mesh Coarsening Strategy for Simulating Additive Manufacturing Processes
,”
Addit. Manuf.
,
30
(
1
), p.
100903
.
45.
Ferguson
,
K.
,
Hardin
,
J.
,
Gillman
,
A.
, and
Kara
,
L. B.
,
2022
, “
Scalar Field Prediction on Topologically-Varying Graphs Using Spectral Shape Encoding
,” ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering and Conference,
American Society of Mechanical Engineers
.
46.
Ferguson
,
K.
,
Gillman
,
A.
,
Hardin
,
J.
, and
Kara
,
L. B.
,
2024
, “
Scalar Field Prediction on Meshes Using Interpolated Multi-resolution Convolutional Neural Networks
,”
ASME J. Appl. Mech.
,
91
(
10
), p. 101002.
47.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Constructing Signed Distance Functions
,
Springer New York
,
New York, NY
, pp.
63
74
.
48.
Lambourne
,
J. G.
,
Willis
,
K. D.
,
Jayaraman
,
P. K.
,
Sanghi
,
A.
,
Meltzer
,
P.
, and
Shayani
,
H.
,
2021
, “
BRepNet: A Topological Message Passing System for Solid Models
,”
CVPR
,
Virtual Only
,
June 19–25
, pp.
12773
12782
.
49.
Inc.
,
2024
,
Netfabb Simulation Utility and Local Simulation
,
San Francisco, CA
.
50.
Paszke
,
A.
,
Gross
,
S.
,
Chintala
,
S.
,
Chanan
,
G.
,
Yang
,
E.
,
DeVito
,
Z.
,
Lin
,
Z.
,
Desmaison
,
A.
,
Antiga
,
L.
, and
Lerer
,
A.
,
2017
, “Automatic Differentiation in Pytorch”.
51.
Reijonen
,
J.
,
Revuelta
,
A.
,
Metsä-Kortelainen
,
S.
, and
Salminen
,
A.
,
2024
, “
Effect of Hard and Soft Re-Coater Blade on Porosity and Processability of Thin Walls and Overhangs in Laser Powder Bed Fusion Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
130
(
5
), pp.
2283
2296
.
52.
Du Rand
,
Francois
,
Van Tonder
,
PJM
, and
Hcvz
,
Pienaar
,
2016
, “
Development of an Additive Manufacturing Re-Coater Monitoring System for Powder Bed Fusion Systems
,”
SATNAC 2016
,
Fancourt, South Africa
,
Sept. 4–7
.
53.
Wilkinson
,
M. D.
,
Dumontier
,
M.
,
Aalbersberg
,
I. J.
,
Appleton
,
G.
,
Axton
,
M.
,
Baak
,
A.
,
Blomberg
,
N.
, et al.,
2016
, “
The Fair Guiding Principles for Scientific Data Management and Stewardship
,”
Sci. Data
,
3
(
1
), pp.
1
9
.
54.
Wu
,
Z.
,
Pan
,
S.
,
Chen
,
F.
,
Long
,
G.
,
Zhang
,
C.
, and
Yu
,
P. S.
,
2021
, “
A Comprehensive Survey on Graph Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
1
), pp.
4
24
.
55.
Li
,
Y.
,
Bu
,
R.
,
Sun
,
M.
, and
Chen
,
B.
,
2018
, “PointCNN”. CoRR, abs/1801.07791.
56.
Wu
,
W.
,
Qi
,
Z.
, and
Fuxin
,
L.
,
2020
, “PointConv: Deep Convolutional Networks on 3D Point Clouds”.
57.
Kobbelt
,
L.
,
Campagna
,
S.
, and
Seidel
,
H.-P.
,
1998
, “
A General Framework for Mesh Decimation
,”
Graphics Interface '98
,
Vancouver, British Columbia, Canada
,
June 18–20
.
58.
Ollivier-Gooch
,
C.
,
2003
, “
Coarsening Unstructured Meshes by Edge Contraction
,”
Int. J. Numer. Methods Eng.
,
57
(
3
), pp.
391
414
.
59.
Fey
,
M.
, and
Lenssen
,
J. E.
,
2019
, “
Fast Graph Representation Learning With PyTorch Geometric
,”
ICLR 2019
,
New Orleans, LA
,
May 6–9
.
60.
Miles
,
J.
,
2005
,
R-Squared, Adjusted R-Squared
,
John Wiley and Sons, Ltd
,
Hoboken, NJ
.
61.
Mochache
,
J. M.
,
2022
, “
Characterization of Fatigue Strength of Additively Manufactured Ti-6Al-4V with Recoater Blade Interference Flaws and Residual Stresses Towards an Enhanced Fatigue Substantiation Methodology for Aerospace Structures Applications
,” PhD thesis, The University of Texas at Arlington, Arlington, TX.
You do not currently have access to this content.