Abstract

Market demands for diversified and personalized customer needs drive the need for continuous high-speed iteration of products. Among them, product conceptual design is the core process for meeting consumer needs and expectations. However, in the product conceptual design stage, data are distributed across sketches, 2D drawings, natural language texts, images, and other files, presenting characteristics of fragmentation, potential inconsistency, and multimodality. This complex data landscape can lead to challenges in accessing comprehensive and up-to-date knowledge for designers. To effectively improve designers' personal proficiency and abilities and break the knowledge isolation phenomenon, we constructed a top-down hierarchical structure of the product conceptual design domain knowledge model, achieving the formal expression of knowledge in the product conceptual design stage. First, a top-down product design domain knowledge graph (DDKG) construction method, including design feature analysis, relationship extraction, and concept definition, was proposed, resulting in the hierarchical ontology. Second, using techniques such as data analysis, knowledge extraction, and semantic similarity calculation, the automatic instantiation of the graph was realized and the DDKG was constructed. The DDKG provides three application modes: domain knowledge search, knowledge recommendation, and exploratory analysis. Finally, the proposed top-down hierarchical DDKG construction method was applied and verified in the high-end integrated home furnishing enterprise product conceptual design. We formed a unified core concept and terminology for the home furnishing conceptual design domain and constructed a knowledge service model, providing support for the intelligent transformation of the high-end integrated home furnishing design field.

References

1.
Chen
,
Y.
,
Zhang
,
Z.
,
Xie
,
Y.
, and
Zhao
,
M.
,
2015
, “
A New Model of Conceptual Design Based on Scientific Ontology and Intentionality Theory. Part I: The Conceptual Foundation
,”
Des. Stud.
,
37
, pp.
12
36
.
2.
Eng
,
N.
,
Aurisicchio
,
M.
, and
Bracewell
,
R.
,
2017
, “
Mapping Software Augments Engineering Design Thinking
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051103
.
3.
Al Handawi
,
K.
,
Brahma
,
A.
,
Wynn
,
D. C.
,
Kokkolaras
,
M.
, and
Isaksson
,
O.
,
2024
, “
Design Space Exploration and Evaluation Using Margin-Based Trade-Offs
,”
ASME J. Mech. Des.
,
146
(
6
), p.
061701
.
4.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput.-Aided Des.
,
45
(
2
), pp.
204
228
.
5.
Zeng
,
J.
,
Yang
,
L. T.
,
Lin
,
M.
,
Ning
,
H.
, and
Ma
,
J.
,
2020
, “
A Survey: Cyber-Physical-Social Systems and Their System-Level Design Methodology
,”
Future Gener. Comput. Syst.
,
105
, pp.
1028
1042
.
6.
Hsu
,
W.
, and
Woon
,
I. M. Y.
,
1998
, “
Current Research in the Conceptual Design of Mechanical Products
,”
Comput.-Aided Des.
,
30
(
5
), pp.
377
389
.
7.
Desmet
,
P.
, and
Hekkert
,
P.
,
2007
, “
Framework of Product Experience
,”
Int. J. Des.
,
1
(
1
), pp.
57
66
.
8.
Krippendorff
,
K.
,
1989
, “
On the Essential Contexts of Artifacts or on the Proposition That “Design is Making Sense (of Things)”
,”
Des. Issues
,
5
(
2
), pp.
9
39
.
9.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2016
,
Product Design and Development
,
McGraw-Hill
,
New York
.
10.
Nidhra
,
S.
,
Yanamadala
,
M.
,
Afzal
,
W.
, and
Torkar
,
R.
,
2013
, “
Knowledge Transfer Challenges and Mitigation Strategies in Global Software Development—A Systematic Literature Review and Industrial Validation
,”
Int. J. Inf. Manage.
,
33
(
2
), pp.
333
355
.
11.
Alavi
,
M.
, and
Leidner
,
D. E.
,
2001
, “
Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues
,”
MIS Q.
,
25
(
1)
, pp.
107
136
.
12.
Ginns
,
P.
, and
Leppink
,
J.
,
2019
, “
Special Issue on Cognitive Load Theory
,”
Educ. Psychol. Rev.
,
31
(
2
), pp.
255
259
.
13.
Song
,
B.
,
Zhou
,
R.
, and
Ahmed
,
F.
,
2024
, “
Multi-modal Machine Learning in Engineering Design: A Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
010801
.
14.
Bakırlıoğlu
,
Y.
, and
Kohtala
,
C.
,
2019
, “
Framing Open Design Through Theoretical Concepts and Practical Applications: A Systematic Literature Review
,”
Hum. Comput. Interact.
,
34
(
5–6
), pp.
389
432
.
15.
Lee
,
C.-H.
,
Chen
,
C.-H.
, and
Lee
,
Y.-C.
,
2020
, “
Customer Requirement-Driven Design Method and Computer-Aided Design System for Supporting Service Innovation Conceptualization Handling
,”
Adv. Eng. Inform.
,
45
, p.
101117
.
16.
Cohen
,
Y. H.
, and
Reich
,
Y.
,
2016
,
Biomimetic Design Method for Innovation and Sustainability
, Vol.
10
,
Springer
,
New York
.
17.
Puik
,
E.
,
Van Duijn
,
J.
, and
Ceglarek
,
D.
,
2017
, “
Guidelines for Application of the Constituent Roadmap of Product Design Based on Axiomatic Design
,”
MATEC Web of Conferences
,
Iaşi, România
.
18.
Jiang
,
S. F.
,
Li
,
J. Q.
, and
Mao
,
Z. F.
,
2016
, “
Research on the Propagation Path of Function Change in Product Conceptual Design
,”
Adv. Des. Concepts Practi.
,
8
(
10
).
19.
Sauli
,
S. A.
,
Ishak
,
M. R.
,
Mustapha
,
F.
,
Yidris
,
N.
, and
Hamat
,
S.
,
2019
, “
Hybridization of TRIZ and CAD-Analysis at the Conceptual Design Stage
,”
Int. J. Comput. Integr. Manuf.
,
32
(
9
), pp.
890
899
.
20.
Lapinskiene
,
V.
, and
Motuziene
,
V.
,
2021
, “
Integrated Building Design Technology Based on Quality Function Deployment and Axiomatic Design Methods: A Case Study
,”
Sustainable Cities Soc.
,
65
, p.
102631
.
21.
Camburn
,
B.
,
Viswanathan
,
V.
,
Linsey
,
J.
,
Anderson
,
D.
,
Jensen
,
D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K.
,
2017
, “
Design Prototyping Methods: State of the Art in Strategies, Techniques, and Guidelines
,”
Des. Sci.
,
3
, p.
e13
.
22.
Yuan
,
P.
,
Li
,
Y.
,
Chen
,
J.
,
Xiong
,
Y.
, and
Liu
,
L.
,
2018
, “
Experimental Study on the Associations Among Sketches Based on Design Cognition
,”
ASME J. Mech. Des.
,
140
(
10
), p.
101102
.
23.
Yoshikawa
,
H.
,
1982
, “General Design Theory and a CAD System”.
24.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2016
, “
Drawing Inspiration From Human Design Teams for Better Search and Optimization: The Heterogeneous Simulated Annealing Teams Algorithm
,”
ASME J. Mech. Des.
,
138
(
4
), p.
044501
.
25.
Ullman
,
D. G.
,
Dietterich
,
T. G.
, and
Stauffer
,
L. A.
,
1988
, “
A Model of the Mechanical Design Process Based on Empirical Data
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
2
(
1
), pp.
33
52
.
26.
Suwa
,
M.
,
Purcell
,
T.
, and
Gero
,
J.
,
1998
, “
Macroscopic Analysis of Design Processes Based on a Scheme for Coding Designers' Cognitive Actions
,”
Des. Stud.
,
19
(
4
), pp.
455
483
.
27.
Westmoreland
,
S.
, and
Schmidt
,
L. C.
,
2010
, “
What Engineering Designers Leave Behind: Developing a Cognitive Coding Scheme for Student Design Journals
,”
ASME International Mechanical Engineering Congress and Exposition
,
Vancouver, British Columbia, Canada
.
28.
Chen
,
L.
,
Jing
,
Q.
,
Tsang
,
Y.
,
Wang
,
Q.
,
Sun
,
L.
, and
Luo
,
J.
,
2024
, “
DesignFusion: Integrating Generative Models for Conceptual Design Enrichment
,”
ASME J. Mech. Des.
,
146
(
11
), p.
111703
.
29.
Luchs
,
M. G.
,
Scott Swan
,
K.
, and
Creusen
,
M. E.
,
2016
, “
Perspective: A Review of Marketing Research on Product Design With Directions for Future Research
,”
J. Prod. Innov. Manage.
,
33
(
3
), pp.
320
341
.
30.
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2018
, “
Process Models in Design and Development
,”
Res. Eng. Des.
,
29
(
2
), pp.
161
202
.
31.
Cross
,
N.
,
2023
,
Design Thinking: Understanding How Designers Think and Work
,
Bloomsbury Publishing
,
London
.
32.
Blessing
,
L. T.
, and
Chakrabarti
,
A.
,
2009
,
DRM: A Design Reseach Methodology
,
Springer
,
New York
.
33.
Honarpour
,
A.
,
Jusoh
,
A.
, and
Nor
,
K. M.
,
2018
, “
Total Quality Management, Knowledge Management, and Innovation: An Empirical Study in R&D Units
,”
Total Qual. Manage. Bus. Excellence
,
29
(
7–8
), pp.
798
816
.
34.
Yang
,
Q.
,
Scuito
,
A.
,
Zimmerman
,
J.
,
Forlizzi
,
J.
, and
Steinfeld
,
A.
,
2018
, “
Investigating How Experienced UX Designers Effectively Work With Machine Learning
,”
Proceedings of the 2018 Designing Interactive Systems Conference
,
Hong Kong, China
.
35.
Hale
,
J.
,
2016
, “
Information-Theoretical Complexity Metrics
,”
Lang. Ling. Compass
,
10
(
9
), pp.
397
412
.
36.
Hogan
,
A.
,
Blomqvist
,
E.
,
Cochez
,
M.
,
d’Amato
,
C.
,
De Melo
,
G.
,
Gutierrez
,
C.
,
Kirrane
,
S.
,
Gayo
,
J. E. L.
,
Navigli
,
R.
, and
Neumaier
,
S.
,
2021
, “
Knowledge Graphs
,”
ACM Comput. Surv.
,
54
(
4
), pp.
1
37
.
37.
Ehrlinger
,
L.
, and
Wöß
,
W.
,
2016
, “
Towards a Definition of Knowledge Graphs
,”
SEMANTiCS
,
48
(
1–4
), p.
2
.
38.
Li
,
C.
,
Wang
,
G.
,
Cao
,
J.
, and
Cai
,
Y.
,
2021
, “
A Multi-agent Communication Based Model for Nested Named Entity Recognition
,”
IEEE-ACM Trans. Audio Speech Lang. Proc.
,
29
, pp.
2123
2136
.
39.
Hong
,
Y.
,
Liu
,
Y.
,
Yang
,
S.
,
Zhang
,
K.
, and
Hu
,
J.
,
2020
, “
Joint Extraction of Entities and Relations Using Graph Convolution Over Pruned Dependency Trees
,”
Neurocomputing
,
411
, pp.
302
312
.
40.
Paulheim
,
H.
,
2017
, “
Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods
,”
Semant. Web
,
8
(
3
), pp.
489
508
.
41.
Lehmann
,
J.
,
Isele
,
R.
,
Jakob
,
M.
,
Jentzsch
,
A.
,
Kontokostas
,
D.
,
Mendes
,
P. N.
,
Hellmann
,
S.
, et al
,
2015
, “
DBPedia—A Large-Scale, Multilingual Knowledge Base Extracted From Wikipedia
,”
Semant. Web
,
6
(
2
), pp.
167
195
.
42.
Suchanek
,
F. M.
,
Kasneci
,
G.
, and
Weikum
,
G.
,
2008
, “
YAGO: A Large Ontology From Wikipedia and WordNet
,”
J. Web Semant.
,
6
(
3
), pp.
203
217
.
43.
Bollacker
,
K.
,
Evans
,
C.
,
Paritosh
,
P.
,
Sturge
,
T.
, and
Taylor
,
J.
,
2008
, “Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge”.
44.
Peng
,
C.
,
Xia
,
F.
,
Naseriparsa
,
M.
, and
Osborne
,
F.
,
2023
, “
Knowledge Graphs: Opportunities and Challenges
,”
Artif. Intell. Rev.
,
56
(
11
), pp.
13071
13102
.
45.
Huang
,
Z.
,
Guo
,
X.
,
Liu
,
Y.
,
Zhao
,
W.
, and
Zhang
,
K.
,
2023
, “
A Smart Conflict Resolution Model Using Multi-layer Knowledge Graph for Conceptual Design
,”
Adv. Eng. Inform.
,
55
, p.
101887
.
46.
Wang
,
Y.
,
Goridkov
,
N.
,
Rao
,
V.
,
Cui
,
D.
,
Grandi
,
D.
, and
Goucher-Lambert
,
K.
,
2023
, “
Embedding Experiential Design Knowledge in Interactive Knowledge Graphs
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041412
.
47.
Noy
,
N.
,
Gao
,
Y.
,
Jain
,
A.
,
Narayanan
,
A.
,
Patterson
,
A.
, and
Taylor
,
J.
,
2019
, “
Industry-Scale Knowledge Graphs: Lessons and Challenges: Five Diverse Technology Companies Show How It's Done
,”
Queue
,
17
(
2
), pp.
48
75
.
48.
Ji
,
S.
,
Pan
,
S.
,
Cambria
,
E.
,
Marttinen
,
P.
, and
Yu
,
P. S.
,
2021
, “
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
,”
IEEE Trans. Neur. Netw. Learn. Syst.
,
33
(
2
), pp.
494
514
.
49.
Kirjavainen
,
S.
, and
Hölttä-Otto
,
K.
,
2021
, “
Deconstruction of Idea Generation Methods Into a Framework of Creativity Mechanisms
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031401
.
50.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101102
.
51.
Rahman
,
M. H.
,
Schimpf
,
C.
,
Xie
,
C.
, and
Sha
,
Z.
,
2019
, “
A Computer-Aided Design Based Research Platform for Design Thinking Studies
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121102
.
52.
Guarino
,
N.
,
Oberle
,
D.
, and
Staab
,
S.
,
2009
, “What is an Ontology?,”
Handbook on Ontologies
,
S.
Staab
and
R.
Studer
, eds.,
Springer
,
Berlin
, pp.
1
17
.
53.
Uschold
,
M.
, and
Gruninger
,
M.
,
1996
, “
Ontologies: Principles, Methods and Applications
,”
Knowl. Eng. Rev.
,
11
(
2
), pp.
93
136
.
54.
Rowley
,
J.
,
2007
, “
The Wisdom Hierarchy: Representations of the DIKW Hierarchy
,”
J. Inf. Sci.
,
33
(
2
), pp.
163
180
.
55.
Huang
,
X.
,
Zhang
,
J.
,
Li
,
D.
, and
Li
,
P.
,
2019
, “
Knowledge Graph Embedding Based Question Answering
,”
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining
,
Melbourne, VIC, Australia
.
56.
Zhang
,
D.
,
Liu
,
Z.
,
Jia
,
W.
,
Liu
,
H.
, and
Tan
,
J.
,
2021
, “
A Review on Knowledge Graph and Its Application Prospects to Intelligent Manufacturing
,”
J. Mech. Eng.
,
57
(
5
), pp.
90
113
.
57.
Shin
,
J.
,
Wu
,
S.
,
Wang
,
F.
,
De Sa
,
C.
,
Zhang
,
C.
, and
,
C.
,
2015
, “
Incremental Knowledge Base Construction Using Deepdive
,”
Proceedings of the VLDB Endowment International Conference on Very Large Data Bases
,
Kohala Coast, HI
,
Sept. 13–15
.
58.
Wang
,
Q.
,
Mao
,
Z.
,
Wang
,
B.
, and
Guo
,
L.
,
2017
, “
Knowledge Graph Embedding: A Survey of Approaches and Applications
,”
IEEE Trans. Knowl. Data Eng.
,
29
(
12
), pp.
2724
2743
.
59.
Munir
,
K.
, and
Sheraz Anjum
,
M.
,
2018
, “
The Use of Ontologies for Effective Knowledge Modelling and Information Retrieval
,”
Appl. Comput. Inf.
,
14
(
2
), pp.
116
126
.
60.
Tao
,
S.
,
Qiu
,
R.
,
Ping
,
Y.
, and
Ma
,
H.
,
2021
, “
Multi-modal Knowledge-Aware Reinforcement Learning Network for Explainable Recommendation
,”
Knowl.-Based Syst.
,
227
, p.
107217
.
You do not currently have access to this content.