Abstract

Generative artificial intelligence offers a more efficient solution for the design of structures. However, an inverse generation of structures, which meet multiple design objectives, remains an open problem. This article thus focuses on the inverse design of frame structures and proposes Graph-based Diffusion-Generative Multiobjective design (GraphDGM), a graph-based generative data-driven surrogate model constrained by multiple targets. By integrating the finite element method (FEM), we construct datasets of frame structures subjected to various conditions. We then developed a conditional graph generation model based on the denoising diffusion probabilistic models (DDPM) and the attention mechanism. We show that our method can efficiently accomplish the inverse design of various frame structures, including a vehicle’s skeleton subjected to five simultaneous constraints. Furthermore, we present comparative experiments against baseline methods to demonstrate the effectiveness and superiority of the GraphDGM.

References

1.
Laksono
,
F. B.
, and
Majid
,
I. A.
,
2021
, “
Structural Assessment of Ladder Frame Chassis Using Fe Analysis: A Designed Construction Referring to Ford ac Cobra
,”
Procedia Struct. Integrity
,
33
, pp.
35
42
.
2.
Idrees
,
U.
,
Ahmad
,
S.
,
Shah
,
I. A.
,
Talha
,
M.
,
Shehzad
,
R.
,
Amjad
,
M.
, and
Koloor
,
S. S. R.
,
2023
, “
Finite Element Analysis of Car Frame Frontal Crash Using Lightweight Materials
,”
J. Eng. Res.
,
11
(
1
), p.
100007
.
3.
Saplinova
,
V.
,
Novikov
,
I.
, and
Glagolev
,
S.
,
2020
, “
Design and Specifications of Racing Car Chassis as Passive Safety Feature
,”
Transp. Res. Procedia
,
50
, pp.
591
607
.
4.
Danhaive
,
R.
, and
Mueller
,
C. T.
,
2021
, “
Design Subspace Learning: Structural Design Space Exploration Using Performance-Conditioned Generative Modeling
,”
Automat. Constr.
,
127
, p.
103664
.
5.
Afzal
,
M.
,
Liu
,
Y.
,
Cheng
,
J. C.
, and
Gan
,
V. J.
,
2020
, “
Reinforced Concrete Structural Design Optimization: A Critical Review
,”
J. Cleaner Prod.
,
260
, p.
120623
.
6.
Pizarro
,
P. N.
,
Hitschfeld
,
N.
,
Sipiran
,
I.
, and
Saavedra
,
J. M.
,
2022
, “
Automatic Floor Plan Analysis and Recognition
,”
Automat. Constr.
,
140
, p.
104348
.
7.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
, pp.
193
202
.
8.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
, pp.
635
654
.
9.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
10.
Alberdi
,
R.
,
Murren
,
P.
, and
Khandelwal
,
K.
,
2015
, “
Connection Topology Optimization of Steel Moment Frames Using Metaheuristic Algorithms
,”
Eng. Struct.
,
100
, pp.
276
292
.
11.
Kociecki
,
M.
, and
Adeli
,
H.
,
2014
, “
Two-Phase Genetic Algorithm for Topology Optimization of Free-Form Steel Space-Frame Roof Structures With Complex Curvatures
,”
Eng. Appl. Artif. Intell.
,
32
, pp.
218
227
.
12.
Zhao
,
L.
,
Li
,
Y.
,
Cai
,
J.
,
Yi
,
J.
,
Zhou
,
Q.
, and
Rong
,
J.
,
2024
, “
Integrated Topology and Size Optimization for Frame Structures Considering Displacement, Stress, and Stability constraints
,”
Struct. Multidiscip. Optim.
,
67
(
4
), p.
48
.
13.
Shimoda
,
M.
, and
Tani
,
S.
,
2021
, “
Simultaneous Shape and Topology Optimization Method for Frame Structures With Multi-Materials
,”
Struct. Multidiscip. Optim.
,
64
(
2
), p.
699
720
.
14.
Gu
,
H.
,
Smith
,
H.
, and
Norato
,
J. A.
,
2023
, “
Manufacturing-Cost-Driven Topology Optimization of Welded Frame Structures
,”
ASME J. Mech. Des.
,
145
(
8
), p.
081702
.
15.
Zhou
,
Y.
,
Wang
,
J.
,
Yang
,
J.
,
Ni
,
P.
,
Lu
,
G.
,
Fang
,
H.
,
Li
,
Z.
,
Yu
,
H.
, and
Huang
,
K.
,
2024
, “
Cross-Modal Pixel-and-Stroke Representation Aligning Networks for Free-Hand Sketch Recognition
,”
Expert Syst. Appl.
,
240
, p.
122505
.
16.
Zhang
,
M.
,
Wang
,
J.
,
Wu
,
J.
,
Belatreche
,
A.
,
Amornpaisannon
,
B.
,
Zhang
,
Z.
,
Miriyala
,
V. P. K.
,
Qu
,
H.
,
Chua
,
Y.
,
Carlson
,
T. E.
,
2021
, “
Rectified Linear Postsynaptic Potential Function for Backpropagation in Deep Spiking Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
5
), pp.
1947
1958
.
17.
Zhang
,
M.
,
Qu
,
H.
,
Belatreche
,
A.
,
Chen
,
Y.
, and
Yi
,
Z.
,
2018
, “
A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
30
(
1
), pp.
123
137
.
18.
Zhao
,
P.
,
Fei
,
Y.
,
Huang
,
Y.
,
Feng
,
Y.
,
Liao
,
W.
, and
Lu
,
X.
,
2023
, “
Design-Condition-Informed Shear Wall Layout Design Based on Graph Neural Networks
,”
Adv. Eng. Inform.
,
58
, p.
102190
.
19.
Zheng
,
L.
,
Karapiperis
,
K.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2023
, “
Unifying the Design Space and Optimizing Linear and Nonlinear Truss Metamaterials by Generative Modeling
,”
Nat. Commun.
,
14
(
1
), p.
7563
.
20.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “Auto-Encoding Variational Bayes,” arXiv preprint arXiv:1312.6114.
21.
Rade
,
J.
,
Balu
,
A.
,
Herron
,
E.
,
Pathak
,
J.
,
Ranade
,
R.
,
Sarkar
,
S.
, and
Krishnamurthy
,
A.
,
2021
, “
Algorithmically-Consistent Deep Learning Frameworks for Structural Topology Optimization
,”
Eng. Appl. Artif. Intell.
,
106
, p.
104483
.
22.
LeCun
,
Y.
,
Boser
,
B.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W.
, and
Jackel
,
L. D.
,
1989
, “
Backpropagation Applied to Handwritten Zip Code Recognition
,”
Neural Comput.
,
1
(
4
), pp.
541
551
.
23.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
24.
Naseri
,
P.
, and
Hum
,
S. V.
,
2021
, “
A Generative Machine Learning-Based Approach for Inverse Design of Multilayer Metasurfaces
,”
IEEE Trans. Anten. Propag.
,
69
(
9
), pp.
5725
5739
.
25.
Jumper
,
J.
,
Evans
,
R.
,
Pritzel
,
A.
,
Green
,
T.
,
Figurnov
,
M.
,
Ronneberger
,
O.
,
Tunyasuvunakool
,
K.
, et al.,
2021
, “
Highly Accurate Protein Structure Prediction With Alphafold
,”
Nature
,
596
(
7873
), pp.
583
589
.
26.
Vignac
,
C.
,
Krawczuk
,
I.
,
Siraudin
,
A.
,
Wang
,
B.
,
Cevher
,
V.
, and
Frossard
,
P.
,
2022
, “Digress: Discrete Denoising Diffusion for Graph Generation,” arXiv preprint arXiv:2209.14734.
27.
Matthews
,
J.
,
Klatt
,
T.
,
Morris
,
C.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Shahan
,
D.
,
2016
, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041404
.
28.
Zeni
,
C.
,
Pinsler
,
R.
,
Zügner
,
D.
,
Fowler
,
A.
,
Horton
,
M.
,
Fu
,
X.
,
Shysheya
,
S.
, et al.,
2023
, “Mattergen: A Generative Model for Inorganic Materials Design,” arXiv preprint arXiv:2312.03687.
29.
Zeng
,
Q.
,
Duan
,
S.
,
Zhao
,
Z.
,
Wang
,
P.
, and
Lei
,
H.
,
2023
, “
Inverse Design of Energy-Absorbing Metamaterials by Topology Optimization
,”
Adv. Sci.
,
10
(
4
), p.
2204977
.
30.
Whalen
,
E.
, and
Mueller
,
C.
,
2022
, “
Toward Reusable Surrogate Models: Graph-Based Transfer Learning on Trusses
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021704
.
31.
Green
,
E.
,
Estrada
,
S.
,
Gopalakrishnan
,
P. K.
,
Jahanbekam
,
S.
, and
Behdad
,
S.
,
2022
, “
A Graph Partitioning Technique to Optimize the Physical Integration of Functional Requirements for Axiomatic Design
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051402
.
32.
Ferrero
,
V.
,
DuPont
,
B.
,
Hassani
,
K.
, and
Grandi
,
D.
,
2022
, “
Classifying Component Function in Product Assemblies With Graph Neural Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021406
.
33.
Heyrani Nobari
,
A.
,
Rey
,
J.
,
Kodali
,
S.
,
Jones
,
M.
, and
Ahmed
,
F.
,
2024
, “
Meshpointnet: 3D Surface Classification Using Graph Neural Networks and Conformal Predictions on Mesh-Based Representations
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051712
.
34.
Huang
,
J.
,
Zhan
,
G.
,
Fan
,
Q.
,
Mo
,
K.
,
Shao
,
L.
,
Chen
,
B.
,
Guibas
,
L.
, and
Dong
,
H.
,
2020
Generative 3D Part Assembly via Dynamic Graph Learning
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
6315
6326
.
35.
Wu
,
R.
,
Zhuang
,
Y.
,
Xu
,
K.
,
Zhang
,
H.
, and
Chen
,
B.
,
2020
, “
PQ-NET: A Generative Part Seq2Seq Network for 3D Shapes
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Seattle, WA
,
June 13–19
, pp.
829
838
.
36.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
37.
Song
,
Y.
, and
Ermon
,
S.
,
2019
, “
Generative Modeling by Estimating Gradients of the Data Distribution
,”
Adv. Neural Inf. Process. Syst.
,
32
.
38.
Song
,
Y.
,
Sohl-Dickstein
,
J.
,
Kingma
,
D. P.
,
Kumar
,
A.
,
Ermon
,
S.
, and
Poole
,
B.
,
2020
, “Score-Based Generative Modeling Through Stochastic Differential Equations,” arXiv preprint arXiv:2011.13456.
39.
Ho
,
J.
,
Jain
,
A.
, and
Abbeel
,
P.
,
2020
, “
Denoising Diffusion Probabilistic Models
,” in
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.
Balcan
,
H.
Lin
(Eds.),
Advances in Neural Information Processing Systems
, Vol. 33,
Curran Associates, Inc.
, pp.
6840
6851
.
40.
Yang
,
L.
,
Zhang
,
Z.
,
Song
,
Y.
,
Hong
,
S.
,
Xu
,
R.
,
Zhao
,
Y.
,
Zhang
,
W.
,
Cui
,
B.
, and
Yang
,
M.-H.
,
2023
, “
Diffusion Models: A Comprehensive Survey of Methods and Applications
,”
ACM Comput. Surv.
,
56
(
4
), pp.
1
39
.
41.
Igashov
,
I.
,
Stärk
,
H.
,
Vignac
,
C.
,
Schneuing
,
A.
,
Satorras
,
V. G.
,
Frossard
,
P.
,
Welling
,
M.
,
Bronstein
,
M.
, and
Correia
,
B.
,
2024
, “
Equivariant 3D-Conditional Diffusion Model for Molecular Linker Design
,”
Nat. Mach. Intell.
,
6
, pp.
417
427
.
42.
Ni
,
B.
,
Kaplan
,
D. L.
, and
Buehler
,
M. J.
,
2023
, “
Generative Design of De Novo Proteins Based on Secondary-Structure Constraints Using an Attention-Based Diffusion Model
,”
Chem
,
9
(
7
), pp.
1828
1849
.
43.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L. u.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,” in
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
,
R.
Garnett
(Eds.),
Advances in Neural Information Processing Systems
, Vol. 30,
Curran Associates, Inc.
, pp.
6000
6010
.
44.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
,
Ft. Lauderdale, FL
,
Apr. 11–13
,
JMLR Workshop and Conference Proceedings
, pp.
315
323
.
45.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
Proceedings of the ICML
,
Atlanta, GA
,
Aug. 26–28
, Vol. 30, p.
3
.
46.
Niu
,
C.
,
Song
,
Y.
,
Song
,
J.
,
Zhao
,
S.
,
Grover
,
A.
, and
Ermon
,
S.
,
2020
, “
Permutation Invariant Graph Generation Via Score-Based Generative Modeling
,” International Conference on Artificial Intelligence and Statistics,
PMLR
, pp.
4474
4484
.
47.
He
,
L.
,
Gilbert
,
M.
, and
Song
,
X.
,
2019
, “
A Python Script for Adaptive Layout Optimization of Trusses
,”
Struct. Multidiscipl. Optim.
,
60
, pp.
835
847
.
48.
You
,
J.
,
Liu
,
B.
,
Ying
,
Z.
,
Pande
,
V.
, and
Leskovec
,
J.
,
2018
, “
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
,”
Adv. Neural Inf. Process. Syst.
,
31
.
49.
Mercado
,
R.
,
Rastemo
,
T.
,
Lindelöf
,
E.
,
Klambauer
,
G.
,
Engkvist
,
O.
,
Chen
,
H.
, and
Bjerrum
,
E. J.
,
2021
, “
Graph Networks for Molecular Design
,”
Mach. Learn.: Sci. Technol.
,
2
(
2
), p.
025023
.
50.
Ji
,
S.
,
Pan
,
S.
,
Cambria
,
E.
,
Marttinen
,
P.
, and
Philip
,
S. Y.
,
2021
, “
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
2
), pp.
494
514
.
51.
Hogan
,
A.
,
Blomqvist
,
E.
,
Cochez
,
M.
,
d’Amato
,
C.
,
Melo
,
G. D.
,
Gutierrez
,
C.
,
Kirrane
,
S.
, et al.,
2021
, “
Knowledge Graphs
,”
ACM Comput. Surv. (Csur)
,
54
(
4
), pp.
1
37
.
52.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
.
53.
Huang
,
H.
,
Sun
,
L.
,
Du
,
B.
, and
Lv
,
W.
,
2023
, “
Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph Generation
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
June
, Vol. 37, pp.
4302
4311
.
54.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,” Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics
, pp.
4171
4186
.
55.
Brown
,
T.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
, et al.,
2020
, “
Language Models are Few-Shot Learners
,” in
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.
Balcan
,
H.
Lin
(Eds.),
Advances in Neural Information Processing Systems
, Vol. 33,
Curran Associates, Inc.
, pp.
1877
1901
.
You do not currently have access to this content.