Abstract

Models of long-term product innovation depict the trajectory of products through an evolutionary selection metaphor in which product designs converge toward a dominant design. The product innovation literature favors trajectory descriptions based on the physical architecture of products while neglecting to account for the functional architecture. This paper offers a new way to explain the life cycle of product innovation by identifying motifs that describe a product’s functions. Functional motifs are recurrent function blocks across multiple generations of designs for a product. A collection of functional motifs defines the functional architecture of the product. Using some key examples from innovations in sewing machines, the paper illustrates the occurrence of motifs as the basis for detecting the emergence of a dominant design. Patents related to the sewing machine over 177 years are analyzed to identify functional motifs characterizing the evolution and convergence toward a dominant design. Results show that motifs do not change over long periods once a dominant design emerges, even though components continue to change. This observation confirms a view of dominant designs as a technological frame but refutes the notion that design no longer matters in the era of incremental change. These motifs refine our understanding of how designs evolve along a particular path over the course of product innovation.

References

1.
Anderson
,
P.
, and
Tushman
,
M. L.
,
1990
, “
Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change
,”
Adm. Sci. Q.
,
35
(
4
), pp.
604
633
.
2.
Rosenberg
,
N.
,
1994
,
Exploring the Black Box : Technology, Economics, and History
,
Cambridge University Press
,
Cambridge
.
3.
Christensen
,
C. M.
,
1992
, “
Exploring the Limits of the Technology S-Curve. Part I: Component Technologies
,”
Prod. Oper. Manage.
,
1
(
4
), pp.
334
357
.
4.
Christensen
,
C. M.
,
1992
, “
Exploring the Limits of the Technology S-Curve. Part II: Architectural Technologies
,”
Prod. Oper. Manage.
,
1
(
4
), pp.
358
366
.
5.
Zhang
,
G.
,
McAdams
,
D. A.
,
Shankar
,
V.
, and
Mohammadi Darani
,
M.
,
2018
, “
Technology Evolution Prediction Using Lotka–Volterra Equations
,”
ASME J. Mech. Des.
,
140
(
6
), p.
061101
.
6.
Murmann
,
J. P.
, and
Frenken
,
K.
,
2006
, “
Toward a Systematic Framework for Research on Dominant Designs, Technological Innovations, and Industrial Change
,”
Res. Policy
,
35
(
7
), pp.
925
952
.
7.
Fujimoto
,
T.
,
2014
, “
The Long Tail of the Auto Industry Life Cycle
,”
J. Prod. Innov. Manage.
,
31
(
1
), pp.
8
16
.
8.
McNerney
,
J.
,
Farmer
,
J. D.
,
Redner
,
S.
, and
Trancik
,
J. E.
,
2011
, “
Role of Design Complexity in Technology Improvement
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
22
), pp.
9008
9013
.
9.
Sarica
,
S.
, and
Luo
,
J.
,
2019
, “
An Infinite Regress Model of Design Change Propagation in Complex Systems
,”
IEEE Syst. J.
,
13
(
4
), pp.
3610
3618
.
10.
Henderson
,
R. M.
, and
Clark
,
K. B.
,
1990
, “
Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms
,”
Adm. Sci. Q.
,
35
(
1
), pp.
9
30
.
11.
Dong
,
A.
,
2017
, “
Functional Lock-In and the Problem of Design Transformation
,”
Res. Eng. Des.
,
28
(
2
), pp.
203
221
.
12.
Abernathy
,
W. J.
, and
Utterback
,
J. M.
,
1978
, “
Patterns of Industrial Innovation
,”
Tech. Rev.
,
80
(
7
), pp.
40
47
.
13.
Kaplan
,
S.
, and
Tripsas
,
M.
,
2008
, “
Thinking About Technology: Applying a Cognitive Lens to Technical Change
,”
Res. Policy
,
37
(
5
), pp.
790
805
.
14.
Goel
,
A. K.
,
2013
, “
A 30-Year Case Study and 15 Principles: Implications of an Artificial Intelligence Methodology for Functional Modeling
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
27
(
3
), pp.
203
215
.
15.
Vermaas
,
P. E.
,
2013
, “
The Coexistence of Engineering Meanings of Function: Four Responses and Their Methodological Implications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
27
(
3
), pp.
191
202
.
16.
Winsor
,
J.
, and
MacCallum
,
K.
,
1994
, “
A Review of Functionality Modelling in Design
,”
Knowl. Eng. Rev.
,
9
(
2
), pp.
163
199
.
17.
Eisenbart
,
B.
,
Gericke
,
K.
, and
Blessing
,
L.
,
2013
, “
An Analysis of Functional Modeling Approaches Across Disciplines
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
27
(
3
), pp.
281
289
.
18.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
J. Mech. Des.
,
122
(
4
), pp.
359
370
.
19.
Cooper
,
G. R.
,
1976
,
The Sewing Machine: Its Invention and Development
, 2nd ed.,
Smithsonian Institution Press
,
Washington, DC
.
20.
Hargadon
,
A. B.
, and
Douglas
,
Y.
,
2001
, “
When Innovations Meet Institutions: Edison and the Design of the Electric Light
,”
Adm. Sci. Q.
,
46
(
3
), pp.
476
501
.
21.
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Data-Driven Platform Design: Patent Data and Function Network Analysis
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021101
.
22.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
23.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2010
, “
The Repeatability of High Definition Design Structure Matrix (HDDSM) Models for Representing Product Architecture
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2010), Vol. 5: 22nd International Conference on Design Theory and Methodology; Special Conference on Mechanical Vibration and Noise
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
ASME
,
New York
, pp.
529
542
.
24.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
AI EDAM
,
24
(Special Issue 1), pp.
87
105
.
25.
Tensa
,
M.
,
Edmonds
,
K.
,
Ferrero
,
V.
,
Mikes
,
A.
,
Soria Zurita
,
N.
,
Stone
,
R.
, and
DuPont
,
B.
,
2019
, “
Toward Automated Functional Modeling: An Association Rules Approach for Mining the Relationship Between Product Components and Function
,”
Proc. Des. Soc.: Inter. Conf. Eng. Des.
,
1
(
1
), pp.
1713
1722
.
26.
Milo
,
R.
,
Shen-Orr
,
S.
,
Itzkovitz
,
S.
,
Kashtan
,
N.
,
Chklovskii
,
D.
, and
Alon
,
U.
,
2002
, “
Network Motifs: Simple Building Blocks of Complex Networks
,”
Science
,
298
(
5594
), pp.
824
827
.
27.
Nandy
,
A.
,
Dong
,
A.
, and
Goucher-Lambert
,
K.
,
2021
, “
Evaluating Quantitative Measures for Assessing Functional Similarity in Engineering Design
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031401
.
28.
Gao
,
X.
,
Xiao
,
B.
,
Tao
,
D.
, and
Li
,
X.
,
2010
, “
A Survey of Graph Edit Distance
,”
Pattern Anal. Appl.
,
13
(
1
), pp.
113
129
.
29.
Hagberg
,
A. A.
,
Schult
,
D. A.
, and
Swart
,
P. J.
,
2008
, “
Exploring Network Structure, Dynamics, and Function Using Networkx
,”
Proceedings of the 7th Python in Science Conference
,
Pasadena, CA
,
Aug. 19–24
,
G.
Varoquaux
,
T.
Vaught
, and
J.
Millman
, eds., pp.
11
15
.
30.
Abu-Aisheh
,
Z.
,
Raveaux
,
R.
,
Ramel
,
J.-Y.
, and
Martineau
,
P.
,
2015
, “
An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems
,”
4th International Conference on Pattern Recognition Applications and Methods 2015
,
Lisbon, Portugal
,
Jan. 10–12
,
SciTePress
, p.
9
.
31.
Koski
,
H.
, and
Kretschmer
,
T.
,
2007
, “
Innovation and Dominant Design in Mobile Telephony
,”
Ind. Innov.
,
14
(
3
), pp.
305
324
.
32.
Nagel
,
R. L.
,
Bohm
,
M. R.
,
Linsey
,
J. S.
, and
Riggs
,
M. K.
,
2015
, “
Improving Students’ Functional Modeling Skills: A Modeling Approach and a Scoring Rubric
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051102
.
You do not currently have access to this content.