Abstract

Understanding design processes and behaviors is important for building more effective design outcomes. During design tasks, teams exhibit sequences of actions that form strategies. This article investigates patterns of design actions in a paired parameter design experiment to discover design strategies that influence outcomes. The analysis uses secondary data from a design experiment in which each pair completes a series of simplified cooperative parameter design tasks to minimize completion time. Analysis of 192 task observations uses exploratory factor analysis to identify design strategies and regression analysis to evaluate their impacts on performance outcomes. The article finds that large actions and high action size variability significantly increase completion times, leading to poor performance outcomes. However, results show that frequently changing input controllers within and among designers significantly reduces completion times, leading to higher performance outcomes. Discussion states that larger actions can introduce unexpected errors, while smaller and consistent actions enhance designers’ understanding of the effects of each action, aiding in better planning for subsequent steps. Frequent controller switching reflects effective communication and understanding within design teams, which is crucial for cooperative tasks.

References

1.
Gero
,
J. S.
, and
Mc Neill
,
T.
,
1998
, “
An Approach to the Analysis of Design Protocols
,”
Design Stud.
,
19
(
1
), pp.
21
61
.
2.
Ross
,
A. M.
,
Hastings
,
D. E.
,
Warmkessel
,
J. M.
, and
Diller
,
N. P.
,
2004
, “
Multi-Attribute Tradespace Exploration as Front End for Effective Space Systems Design
,”
J. Spacecraft Rockets
,
41
(
1
), pp.
20
28
.
3.
Turner
,
C. J.
,
Masoudi
,
N.
,
Stewart
,
H.
,
Daniels
,
J.
,
Gorsich
,
D.
,
Rizzo
,
D.
,
Hartman
,
G.
,
Agusti
,
R.
,
Skowronska
,
A.
,
Castanier
,
M.
, and
Rapp
,
S. H.
,
2022
, “
A Synthetic Tradespace Model for Tradespace Analysis and Exploration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2: 42nd Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, ASME, p. V002T02A080.
4.
Wolf
,
D.
,
Hyland
,
J.
,
Simpson
,
T. W.
, and
Zhang
,
X.
,
2011
, “
The Importance of Training for Interactive Trade Space Exploration: A Study of Novice and Expert Users
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
3
), p. 031009.
5.
Simpson
,
T. W.
,
Carlsen
,
D.
,
Malone
,
M.
, and
Kollat
,
J.
,
2011
, “Trade Space Exploration: Assessing the Benefits of Putting Designers ‘Back-in-the-Loop’ During Engineering Optimization,”
Human-in-the-Loop Simulations
,
L.
Rothrock
, and
S.
Narayanan
, eds.,
Springer
,
London
, pp.
131
152
.
6.
Miller
,
S. W.
,
Simpson
,
T. W.
,
Yukish
,
M. A.
,
Bennitt
,
L. A.
,
Lego
,
S. E.
, and
Stump
,
G. M.
,
2013
, “
Preference Construction, Sequential Decision Making, and Trade Space Exploration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 3A: 39th Design Automation Conference
,
Portland, OR
,
Aug. 4–7
, ASME, p. V03AT03A014.
7.
Ross
,
A. M.
,
McManus
,
H. L.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2010
, “
Role for Interactive Tradespace Exploration in Multi-stakeholder Negotiations
,”
AIAA SPACE 2010 Conference & Exposition
,
Anaheim, CA
,
Aug. 30–Sept. 2
.
8.
Fitzgerald
,
M. E.
, and
Ross
,
A. M.
,
2015
, “
Effects of Enhanced Multi-Party Tradespace Visualization on a Two-Person Negotiation
,”
Procedia Comput. Sci.
,
44
, pp.
466
475
.
9.
Yu
,
B. Y.
,
Honda
,
T.
,
Sharqawy
,
M.
, and
Yang
,
M.
,
2016
, “
Human Behavior and Domain Knowledge in Parameter Design of Complex Systems
,”
Des. Stud.
,
45
(
B
), pp.
242
267
.
10.
Grogan
,
P. T.
, and
de Weck
,
O. L.
,
2016
, “
Collaboration and Complexity: An Experiment on the Effect of Multi-Actor Coupled Design
,”
Res. Eng. Des.
,
27
(
3
), pp.
221
235
.
11.
Alelyani
,
T.
,
Yang
,
Y.
, and
Grogan
,
P. T.
,
2017
, “
Understanding Designers Behavior in Parameter Design Activities
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 7: 29th International Conference on Design Theory and Methodology
,
Cleveland, OH
,
Aug. 6–9
, ASME, p. V007T06A030.
12.
Thekinen
,
J.
, and
Grogan
,
P. T.
,
2021
, “
Information Exchange Patterns in Digital Engineering: An Observational Study Using Web-Based Virtual Design Studio
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041012
.
13.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), p.
26
.
14.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2015
, “
Studying Human Design Teams Via Computational Teams of Simulated Annealing Agents
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 7: 27th International Conference on Design Theory and Methodology
,
Boston, MA
,
Aug. 2–5
, ASME, p. V007T06A030.
15.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Mining Process Heuristics From Designer Action Data Via Hidden Markov Models
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111412
.
16.
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2019
, “
Transferring Design Strategies From Human to Computer and Across Design Problems
,”
ASME J. Mech. Des.
,
141
(
11
), p.
114501
.
17.
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
Design Strategy Network: A Deep Hierarchical Framework to Represent Generative Design Strategies in Complex Action Spaces
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021404
.
18.
Rahman
,
M. H.
,
Gashler
,
M.
,
Xie
,
C.
, and
Sha
,
Z.
,
2018
, “
Automatic Clustering of Sequential Design Behaviors
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 1B: 38th Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, ASME, p. V01BT02A041.
19.
Jablokow
,
K. W.
,
Sonalkar
,
N.
,
Edelman
,
J.
,
Mabogunje
,
A.
, and
Leifer
,
L.
,
2019
, “
Investigating the Influence of Designers’ Cognitive Characteristics and Interaction Behaviors in Design Concept Generation
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091101
.
20.
Mirabito
,
Y.
, and
Goucher-Lambert
,
K.
,
2022
, “
Factors Impacting Highly Innovative Designs: Idea Fluency, Timing, and Order
,”
ASME J. Mech. Des.
,
144
(
1
), p.
011401
.
21.
Austin-Breneman
,
J.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2012
, “
A Study of Student Design Team Behaviors in Complex System Design
,”
ASME J. Mech. Des.
,
134
(
12
), p.
124504
.
22.
Hirschi
,
N.
, and
Frey
,
D.
,
2002
, “
Cognition and Complexity: An Experiment on the Effect of Coupling in Parameter Design
,”
Res. Eng. Des.
,
13
(
3
), pp.
123
131
.
23.
Yu
,
R.
, and
Gero
,
J.
,
2016
, “
An Empirical Foundation for Design Patterns in Parametric Design
,”
Int. J. Archit. Comput.
,
14
(
3
), pp.
289
302
.
24.
Woodbury
,
R.
,
2010
,
Elements of Parametric Design
,
Routledge
,
New York
.
25.
Avşar
,
A. Z.
, and
Grogan
,
P. T.
,
2020
, “
Effects of Locus of Control Personality Trait on Team Performance in Cooperative Engineering Design Tasks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 8: 32nd International Conference on Design Theory and Methodology (DTM)
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V008T08A036.
26.
Wöhr
,
F.
,
Uhri
,
E.
,
Königs
,
S.
,
Trauer
,
J.
,
Stanglmeier
,
M.
, and
Zimmermann
,
M.
,
2023
, “
Coordination and Complexity: An Experiment on the Effect of Integration and Verification in Distributed Design Processes
,”
Des. Sci.
,
9
(
e1
), pp.
1
31
.
27.
Hackman
,
J. R.
, and
Morris
,
C. G.
,
1975
, “
Group Tasks, Group Interaction Process, and Group Performance Effectiveness: A Review and Proposed Integration
,”
Adv. Exp. Soc. Psychol.
,
8
, pp.
45
99
.
28.
Gibbs
,
G.
,
1995
,
Assessing Student Centred Courses
,
Oxford Centre for Staff Development
,
Oxford, UK
.
29.
Dunne
,
E.
, and
Rawlins
,
M.
,
2000
, “
Bridging the Gap Between Industry and Higher Education: Training Academics to Promote Student Teamwork
,”
Innov. Educ. Train. Int.
,
37
(
4
), pp.
361
371
.
30.
Smith
,
R. P.
, and
Eppinger
,
S. D.
,
1998
, “
Deciding Between Sequential and Concurrent Tasks in Engineering Design
,”
Concurrent Eng.
,
6
(
1
), pp.
15
25
.
31.
Smith
,
R. P.
, and
Eppinger
,
S. D.
,
1997
, “
Identifying Controlling Features of Engineering Design Iteration
,”
Manag. Sci.
,
43
(
3
), pp.
257
402
.
32.
Steen
,
M.
,
2013
, “
Co-design as a Process of Joint Inquiry and Imagination
,”
Design Issues
,
29
(
2
), pp.
16
28
.
33.
Thurston
,
D. L.
,
2001
, “
Real and Misconceived Limitations to Decision Based Design With Utility Analysis
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
176
182
.
34.
Tucker
,
R.
,
Abbasi
,
N.
,
Thorpe
,
G.
,
Ostwald
,
M.
,
Williams
,
A.
, and
Wallis
,
L.
,
2014
, “
Enhancing and Assessing Group and Team Learning in Architecture and Related Design Contexts
,” Final Report, Office for Learning and Teaching, Department of Education, Sydney, Australia.
35.
Takai
,
S.
, and
Esterman
,
M.
,
2017
, “
Towards a Better Design Team Formation: A Review of Team Effectiveness Models and Possible Measurements of Design-Team Inputs, Processes, and Outputs
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices
,
Cleveland, OH
,
Aug. 6–9
, ASME, p. V003T04A018.
36.
Fournier
,
G.
, and
Jeanrie
,
C.
,
2003
, “Locus of Control: Back to Basics,”
Positive Psychological Assessment: A Handbook of Models and Measures
,
S. J.
Lopez
, and
C. R.
Snyder
, eds.,
American Psychological Association
,
Washington, DC
, pp.
139
154
.
37.
Boston Consulting Group
,
1968
,
Perspectives on Experience
,
The Boston Consulting Group, Inc.
,
Boston, MA
.
You do not currently have access to this content.