Abstract

Biological systems in nature have evolved for millions of years to adapt and survive the environment. Many features they developed can be inspirational and beneficial for solving technical problems in modern industries. This leads to a specific form of design-by-analogy called bio-inspired design (BID). Although BID as a design method has been proven beneficial, the gap between biology and engineering continuously hinders designers from effectively applying the method. Therefore, we explore the recent advance of artificial intelligence (AI) for a data-driven approach to bridge the gap. This paper proposes a generative design approach based on the generative pre-trained language model (PLM) to automatically retrieve and map biological analogy and generate BID in the form of natural language. The latest generative pre-trained transformer, namely generative pre-trained transformer 3 (GPT-3), is used as the base PLM. Three types of design concept generators are identified and fine-tuned from the PLM according to the looseness of the problem space representation. Machine evaluators are also fine-tuned to assess the mapping relevancy between the domains within the generated BID concepts. The approach is evaluated and then employed in a real-world project of designing light-weighted flying cars during its conceptual design phase The results show our approach can generate BID concepts with good performance.

References

1.
ISO/TC266
,
2015
,
Biomimetics—Terminology, Concepts and Methodology
.”
2.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
3.
Linic
,
S.
,
Lucanin
,
V.
,
Zivkovic
,
S.
,
Rakovic
,
M.
, and
Puharic
,
M.
,
2021
, “Experimental and Numerical Methods for Concept Design and Flow Transition Prediction on the Example of the Bionic High-Speed Train,”
Experimental and Computational Investigations in Engineering
,
N.
Mitrovic
,
G.
Mladenovic
, and
A.
Mitrovic
, eds.,
Springer
,
Cham
, pp.
65
82
.
4.
Vattam
,
S.
, and
Goel
,
A.
,
2013
, “
An Information Foraging Model of Interactive Analogical Retrieval
,”
Proceedings of the Annual Meeting of the Cognitive Science Society
,
Berlin, Germany
,
July 31–Aug. 3
.
5.
Kruiper
,
R.
,
Vincent
,
J. F.
,
Abraham
,
E.
,
Soar
,
R. C.
,
Konstas
,
I.
,
Chen-Burger
,
J.
, and
Desmulliez
,
M. P.
,
2018
, “
Towards a Design Process for Computer-Aided Biomimetics
,”
Biomimetics
,
3
(
3
), p.
14
.
6.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-By-Analogy: State-of-the-Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020801
.
7.
Gael
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.
8.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
9.
Hey
,
J.
,
Linsey
,
J.
,
Agogino
,
A. M.
, and
Wood
,
K. L.
,
2008
, “
Analogies and Metaphors in Creative Design
,”
Int. J. Eng. Educ.
,
24
(
2
), p.
283
.
10.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
AI EDAM
,
22
(
2
), pp.
85
100
.
11.
Kokinov
,
B.
, and
French
,
R. M.
,
2003
, “Computational Models of Analogy-Making,”
Encyclopedia of Cognitive Science
, Vol.
1
,
L.
Nadel
, ed.,
Nature Publishing Group
,
London
, pp.
113
118
.
12.
Hall
,
R. P.
,
1989
, “
Computational Approaches to Analogical Reasoning: A Comparative Analysis
,”
Artif. Intell.
,
39
(
1
), pp.
39
120
.
13.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), pp.
45
56
.
14.
Verhaegen
,
P. A.
,
D’hondt
,
J.
,
Vandevenne
,
D.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
Identifying Candidates for Design-by-Analogy
,”
Comput. Ind.
,
62
(
4
), pp.
446
459
.
15.
Holyoak
,
K. J.
, and
Thagard
,
P.
,
1989
, “
Analogical Mapping by Constraint Satisfaction
,”
Cognit. Sci.
,
13
(
3
), pp.
295
355
.
16.
Bhatta
,
S. R.
, and
Goel
,
A. K.
,
1996
, “
From Design Experiences to Generic Mechanisms: Model-Based Learning in Analogical Design
,”
AI EDAM
,
10
(
2
), pp.
131
136
.
17.
Shai
,
O.
,
Reich
,
Y.
, and
Rubin
,
D.
,
2009
, “
Creative Conceptual Design: Extending the Scope by Infused Design
,”
Comput.-Aided Des.
,
41
(
3
), pp.
117
135
.
18.
Reich
,
Y.
, and
Shai
,
O.
,
2012
, “
The Interdisciplinary Engineering Knowledge Genome
,”
Res. Eng. Des.
,
23
(
3
), pp.
251
264
.
19.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl.-Based Syst.
,
218
, p.
106873
.
20.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
AI EDAM
,
35
(
3
), pp.
265
283
.
21.
Siddharth
,
L.
,
Blessing
,
L.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Engineering Knowledge Graph From Patent Database
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021008
.
22.
Salgueiredo
,
C. F.
, and
Hatchuel
,
A.
,
2016
, “
Beyond Analogy: A Model of Bioinspiration for Creative Design
,”
AI EDAM
,
30
(
2
), pp.
159
170
.
23.
Vincent
,
J. F.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A. K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc., Interface
,
3
(
9
), pp.
471
482
.
24.
Shu
,
L. H.
,
Ueda
,
K.
,
Chiu
,
I.
, and
Cheong
,
H.
,
2011
, “
Biologically Inspired Design
,”
CIRP Ann.
,
60
(
2
), pp.
673
693
.
25.
Cohen
,
Y. H.
, and
Reich
,
Y.
,
2016
,
Biomimetic Design Method for Innovation and Sustainability
, Vol.
10
,
Springer
,
Berlin, Germany
.
26.
Fayemi
,
P. E.
,
Wanieck
,
K.
,
Zollfrank
,
C.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2017
, “
Biomimetics: Process, Tools and Practice
,”
Bioinspiration Biomimetics
,
12
(
1
), p.
011002
.
27.
Badarnah
,
L.
, and
Kadri
,
U.
,
2015
, “
A Methodology for the Generation of Biomimetic Design Concepts
,”
Architect. Sci. Rev.
,
58
(
2
), pp.
120
133
.
28.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
, “Product Development Process,”
Engineering Design
,
Springer
,
London
, pp.
125
143
.
29.
Vincent
,
J. F.
, and
Mann
,
D. L.
,
2002
, “
Systematic Technology Transfer From Biology to Engineering
,”
Philos. Trans. R. Soc. London, Ser. A
,
360
(
1791
), pp.
159
173
.
30.
Wanieck
,
K.
,
Fayemi
,
P. E.
,
Maranzana
,
N.
,
Zollfrank
,
C.
, and
Jacobs
,
S.
,
2017
, “
Biomimetics and Its Tools
,”
Bioinspired, Biomimetic Nanobiomater.
,
6
(
2
), pp.
53
66
.
31.
Nagel
,
J. K.
,
Nagel
,
R. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Function Based, Biologically Inspired Concept Generation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
521
535
.
32.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.
33.
Deldin
,
J. M.
, and
Schuknecht
,
M.
,
2014
, “The AskNature Database: Enabling Solutions in Biomimetic Design,”
Biologically Inspired Design
,
A.
Goel
,
D.
McAdams
, and
R.
Stone
, eds.,
Springer
,
London
, pp.
17
27
.
34.
Shu
,
L. H.
, and
Cheong
,
H.
,
2014
, “A Natural Language Approach to Biomimetic Design,”
Biologically Inspired Design
,
A.
Goel
,
D.
McAdams
, and
R.
Stone
, eds.,
Springer
,
London
, pp.
29
61
.
35.
Chen
,
C.
,
Li
,
Y.
,
Tao
,
Y.
,
Chen
,
J.
,
Liu
,
Q.
, and
Li
,
S.
,
2021
, “
A Method to Automatically Push Keywords for Biological Information Searching in Bio-Inspired Design
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
1
), pp.
30
47
.
36.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
,
2010
, “
A Methodology for Supporting ‘Transfer’ in Biomimetic Design
,”
AI EDAM
,
24
(
4
), pp.
483
506
.
37.
Chen
,
C.
,
Tao
,
Y.
,
Li
,
Y.
,
Liu
,
Q.
,
Li
,
S.
, and
Tang
,
Z.
,
2021
, “
A Structure-Function Knowledge Extraction Method for Bio-Inspired Design
,”
Comput. Ind.
,
127
, p.
103402
.
38.
Arslan
,
Y.
,
Allix
,
K.
,
Veiber
,
L.
,
Lothritz
,
C.
,
Bissyandé
,
T. F.
,
Klein
,
J.
, and
Goujon
,
A.
,
2021
, “
A Comparison of Pre-Trained Language Models for Multi-Class Text Classification in the Financial Domain
,”
Companion Proceedings of the Web Conference 2021
,
Ljubljana Slovenia
,
Apr. 19–23
, pp.
260
268
.
39.
Kenton
,
J. D. M. W. C.
, and
Toutanova
,
L. K.
,
2019
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of NAACL-HLT
,
Minneapolis, MN
,
June 2–7
, pp.
4171
4186
.
40.
Brown
,
T. B.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P
,
Neelakantan
,
A
, et al
,
2020
, “
Language Models Are Few-Shot Learners
,”
NIPS'20: 34th International Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 6–12
.
41.
Radford
,
A.
,
Wu
,
J.
,
Child
,
R.
,
Luan
,
D.
,
Amodei
,
D.
, and
Sutskever
,
I.
,
2019
, “
Language Models Are Unsupervised Multitask Learners
,” Technical Report, OpenAI.
42.
Duan
,
J.
,
Zhao
,
H.
,
Zhou
,
Q.
,
Qiu
,
M.
, and
Liu
,
M.
,
2020
, “
A Study of Pre-Trained Language Models in Natural Language Processing
,”
Proceedings of the 2020 IEEE International Conference on Smart Cloud (SmartCloud)
,
Washington, DC
,
Nov. 6–8
, pp.
116
121
.
43.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.
44.
OpenAI API Documentation
,
2022
, “
Fine-Tuning
,” https://beta.openai.com/docs/guides/fine-tuning.
45.
Soares
,
L. B.
,
Fitzgerald
,
N.
,
Ling
,
J.
, and
Kwiatkowski
,
T.
,
2019
, “
Matching the Blanks: Distributional Similarity for Relation Learning
,”
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
,
Florence, Italy
,
July 28–Aug. 2
, pp.
2895
2905
.
46.
Kusner
,
M.
,
Sun
,
Y.
,
Kolkin
,
N.
, and
Weinberger
,
K.
,
2015
, “
From Word Embeddings to Document Distances
,”
Proceedings of the International Conference on Machine Learning
,
Lille, France
,
July 7–9
, PMLR, pp.
957
966
.
47.
Kilickaya
,
M.
,
Erdem
,
A.
,
Ikizler-Cinbis
,
N.
, and
Erdem
,
E.
,
2017
, “
Re-evaluating Automatic Metrics for Image Captioning
,”
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
,
Valencia, Spain
,
Apr. 3–7
, pp.
199
209
.
48.
Chow
,
J.
,
Specia
,
L.
, and
Madhyastha
,
P. S.
,
2019
, “
WMDO: Fluency-Based Word Mover’s Distance for Machine Translation Evaluation
,”
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
,
Florence, Italy
,
Aug. 1–2
, pp.
494
500
.
49.
Zhang
,
X.
,
Huang
,
J.
,
Huang
,
Y.
,
Huang
,
K.
,
Yang
,
L.
,
Han
,
Y.
,
Wang
,
L.
,
Liu
,
H.
,
Luo
,
J.
, and
Li
,
J.
,
2022
, “
Intelligent Amphibious Ground-Aerial Vehicles: State of the Art Technology for Future Transportation
,”
IEEE Trans. Intell. Veh.
, pp.
1
19
.
50.
Douglas
,
L. D.
,
Jillian
,
M. H.
,
Thomas
,
L. R.
, and
Eric
,
L. S.
,
2006
, “
Identifying Quality, Novel, and Creative Ideas: Constructs and Scales for Idea Evaluation
,”
J. Assoc. Inf. Syst.
,
7
(
10
), pp.
646
699
.
51.
Hendrycks
,
D.
,
Burns
,
C.
,
Kadavath
,
S.
,
Arora
,
A.
,
Basart
,
S.
,
Tang
,
E
,
Song
,
D
, and
Steinhardt
,
J
,
2021
, “Measuring Mathematical Problem Solving With the Math Dataset,”
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks
, Vol.
1
,
J.
Vanschoren
, and
S.
Yeung
, eds.,
Virtual
.
52.
Cobbe
,
K.
,
Kosaraju
,
V.
,
Bavarian
,
M.
,
Chen
M
,
Jun
H
,
Kaiser
L
,
Plappert
M
, et al
,
2021
, “
Training Verifiers to Solve Math Word Problems
,” arXiv preprint arXiv:2110.14168.
53.
Siddharth
,
L.
,
Blessing
,
L.
, and
Luo
,
J.
,
2021
, “
Natural Language Processing In-and-for Design Research
,”
Des. Sci.
,
8
, p.
E21
.
54.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
55.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Martin
,
J.
,
Balon
,
C.
,
McComb
,
C.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Versus Artificial Intelligence: A Data-Driven Approach to Real-Time Process Management During Complex Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021405
.
56.
Gyory
,
J. T.
,
Kotovsky
,
K.
,
McComb
,
C.
, and
Cagan
,
J.
,
2022
, “
Comparing the Impacts on Team Behaviors Between AI and Human Process Management in Interdisciplinary Design Teams
,”
ASME J. Mech. Des.
,
144
(
10
), p.
104501
.
57.
Han
,
J.
,
Sarica
,
S.
,
Shi
,
F.
, and
Luo
,
J.
,
2022
, “
Semantic Networks for Engineering Design: State of the Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020802
.
58.
Zhu
,
Q.
, and
Luo
,
J.
,
2022
, “
Generative Pre-Trained Transformer for Design Concept Generation: an Exploration
,”
Proc. Des. Soc.
,
2
, pp.
1825
1834
.
59.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “Generative Design Ideation: A Natural Language Generation Approach,”
Design Computing and Cognition'22
,
J. S.
Gero
, ed.,
Springer
,
Cham
, pp.
39
50
.
60.
Bommasani
,
R.
,
Hudson
,
D. A.
,
Adeli
,
E.
,
Altman
,
R.
,
Arora
,
S.
,
von Arx
S.
,
Bernstein
M. S.
, et al
,
2021
, “
On the Opportunities and Risks of Foundation Models
,” arXiv preprint arXiv:2108.07258. https://crfm.stanford.edu/assets/report.pdf
61.
Luo
,
J.
,
2022
, “
Data-Driven Innovation: What Is It?
,”
IEEE Trans. Eng. Manage.
,
70
(
2
), pp.
784
790
.
You do not currently have access to this content.