Abstract

The objective of this article is to present a comprehensive task analysis methodology that can provide guidelines for the design of dexterous robotic grippers that are versatile enough to perform various tasks, yet simple to manufacture. This methodology combines a human-centered gestures analysis and an object-centered grasp stability analysis. The former relies on a careful examination of a human operator’s hands gestures while performing a specific process, providing designers with tools that help specify the number of fingers, the number of degrees-of-freedom, and the placement of tactile sensors. The latter exploits a grasp quality metric to compute the efforts required to handle the involved objects, providing guidelines for the specification of the actuation system. Using observations of operators at work as a source of inspiration allows guarantying the ability to perform the considered tasks (with guaranteed stability, thanks to the grasp analysis), contrary to technologically driven optimization methodologies, which often sacrifice manipulation capabilities for the sake of simplicity. Yet, our task-oriented approach allows focusing on certain tasks, hence simpler solutions than bio-mimetic designs that try to fully mimic the human hand. In other words, the methodology introduced in this article intends to help specify multi-fingered architectures able to maintain a high degree of dexterity with a reduced kinematic complexity, favoring the best possible compromise between grasp capabilities and design complexity. This approach is exemplified by defining technical specifications for the design of a multi-fingered robotic gripper intended to perform the tasks involved in a sterility testing process.

References

1.
Bae
,
J.-H.
,
Park
,
S.-W.
,
Park
,
J.-H.
,
Baeg
,
M.-H.
,
Kim
,
D.
, and
Oh
,
S.-R.
,
2012
, “
Development of a Low Cost Anthropomorphic Robot Hand With High Capability
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
4776
4782
.
2.
Balasubramanian
,
R.
, and
Santos
,
V. J.
,
2014
,
The Human Hand as an Inspiration for Robot Hand Development
, Vol. 95,
Springer
,
Switzerland
.
3.
Mattar
,
E.
,
2013
, “
A Survey of Bio-Inspired Robotics Hands Implementation: New Directions in Dexterous Manipulation
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
517
544
.
4.
Cobos
,
S.
,
Ferre
,
M.
,
Ángel Sánchez-Urán
,
M.
,
Ortego
,
J.
, and
Aracil
,
R.
,
2010
, “
Human Hand Descriptions and Gesture Recognition for Object Manipulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
305
317
.
5.
Pitarch
,
E. P.
,
Yang
,
J.
, and
Abdel-Malek
,
K.
,
2005
, “
Santos Hand: A 25 Degree-of-Freedom Model
,” Tech. Rep., SAE Technical Paper.
6.
Bray
,
M.
,
Koller-Meier
,
E.
,
Müller
,
P.
,
Schraudolph
,
N. N.
, and
Van Gool
,
L.
,
2005
, “
Stochastic Optimisation for High-Dimensional Tracking in Dense Range Maps
,”
IEE Proc. Vis. Image Signal Process.
,
152
(
4
), pp.
501
512
.
7.
Chua
,
C.-S.
,
Guan
,
H.
, and
Ho
,
Y.-K.
,
2002
, “
Model-Based 3d Hand Posture Estimation From a Single 2d Image
,”
Image Vis. Comput.
,
20
(
3
), pp.
191
202
.
8.
Billard
,
A.
, and
Kragic
,
D.
,
2019
, “
Trends and Challenges in Robot Manipulation
,”
Science
,
364
(
6446
). p.
eaat8414
.
9.
Kemp
,
C. C.
,
Edsinger
,
A.
, and
Torres-Jara
,
E.
,
2007
, “
Challenges for Robot Manipulation in Human Environments [Grand Challenges of Robotics]
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
20
29
.
10.
Grossard
,
M.
,
Martin
,
J.
, and
da Cruz Pacheco
,
G. F.
,
2014
, “
Control-Oriented Design and Robust Decentralized Control of the CEA Dexterous Robot Hand
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1809
1821
.
11.
Kochan
,
A.
,
2005
, “
Shadow Delivers First Hand
,”
Ind. Rob.
,
32
(
1
), pp.
15
16
.
12.
Grebenstein
,
M.
,
2014
, “The Awiwi Hand: An Artificial Hand for the DLR Hand Arm System,”
Approaching Human Performance
,
B.
Siciliano
, and
K.
Oussama
, eds.,
Springer
,
Switzerland
, pp.
65
130
.
13.
Pons
,
J. L.
,
Ceres
,
R.
, and
Pfeiffer
,
F.
,
1999
, “
Multifingered Dextrous Robotics Hand Design and Control: A Review
,”
Robotica
,
17
(
6
), pp.
661
674
.
14.
Melchiorri
,
C.
, and
Kaneko
,
M.
,
2016
, “Robot Hands,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Berlin, Germany
, pp.
463
480
.
15.
Zheng
,
J. Z.
,
De La Rosa
,
S.
, and
Dollar
,
A. M.
,
2011
, “
An Investigation of Grasp Type and Frequency in Daily Household and Machine Shop Tasks
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, IEEE, pp.
4169
4175
..
16.
Honarpardaz
,
M.
,
Tarkian
,
M.
,
Ölvander
,
J.
, and
Feng
,
X.
,
2017
, “
Finger design automation for industrial robot grippers: A review
,”
Rob. Auton. Syst.
,
87
, pp.
104
119
.
17.
Raval
,
S.
, and
Patel
,
B.
,
2016
, “
A Review on Grasping Principle and Robotic Grippers
,”
Int. J. Eng. Dev. Res.
,
4
(
1
), pp.
483
490
.
18.
Spiliotopoulos
,
J.
,
Michalos
,
G.
, and
Makris
,
S.
,
2018
, “
A Reconfigurable Gripper for Dexterous Manipulation in Flexible Assembly
,”
Inventions
,
3
(
1
), p.
4
.
19.
Puig
,
J. E. P.
,
Rodriguez
,
N. E. N.
, and
Ceccarelli
,
M.
,
2008
, “
A Methodology for the Design of Robotic Hands With Multiple Fingers
,”
Int. J. Adv. Rob. Syst.
,
5
(
2
), p.
22
.
20.
Martell
,
J. W. S.
, and
Gini
,
G.
,
2007
, “
Robotic Hands: Design Review and Proposal of New Design Process
,”
World Acad. Sci. Eng. Technol.
,
26
(
5
), pp.
85
90
.
21.
Lee
,
J.-J.
, and
Tsai
,
L.-W.
,
2002
, “
Structural Synthesis of Multi-Fingered Hands
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
272
276
.
22.
Ciocarlie
,
M.
, and
Allen
,
P.
,
2009
, “
A Design and Analysis Tool for Underactuated Compliant Hands
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, A Design and Analysis Tool for Underactuated Compliant Hands
,
St. Louis, MO
,
Oct. 11–15
, IEEE, pp.
5234
5239
.
23.
Gosselin
,
F.
,
Andriot
,
C.
,
Keith
,
F.
,
Louveau
,
F.
,
Briantais
,
G.
, and
Chambaud
,
P.
,
2020
, “
Design and Integration of a Dexterous Interface With Hybrid Haptic Feedback
,”
ICINCO
,
Online streaming
,
July 7–9
, pp.
455
463
.
24.
Hansen
,
C.
,
Gosselin
,
F.
,
Mansour
,
K. B.
,
Devos
,
P.
, and
Marin
,
F.
,
2018
, “
Design-Validation of a Hand Exoskeleton Using Musculoskeletal Modeling
,”
Appl. Ergon.
,
68
, pp.
283
288
.
25.
Gonzalez
,
F.
,
Gosselin
,
F.
, and
Bachta
,
W.
,
2014
, “
Analysis of Hand Contact Areas and Interaction Capabilities During Manipulation and Exploration
,”
IEEE Trans. Haptics
,
7
(
4
), pp.
415
429
.
26.
Gonzalez
,
F.
,
Gosselin
,
F.
, and
Bachta
,
W.
,
2013
, “
A Framework for the Classification of Dexterous Haptic Interfaces Based on the Identification of the Most Frequently Used Hand Contact Areas
,”
2013 World Haptics Conference (WHC)
,
Daejeon, South Korea
,
Apr. 14–18
, IEEE, pp.
461
466
.
27.
Chabrier
,
A.
,
Gonzalez
,
F.
,
Gosselin
,
F.
, and
Bachta
,
W.
,
2015
, “
Analysis of the Directions in Which Forces Are Applied on the Hand During Manual Manipulation and Exploration
,”
2015 IEEE World Haptics Conference (WHC)
,
Evanston, IL
,
June 22–26
, IEEE, pp.
280
285
.
28.
Bruyninckx
,
H.
,
Demey
,
S.
, and
Kumar
,
V.
,
1998
, “
Generalized Stability of Compliant Grasps
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May
, Vol. 3, IEEE, pp.
2396
2402
.
29.
Hong
,
D. W.
, and
Cipra
,
R. J.
,
2005
, “
Visualization of the Contact Force Solution Space for MultiLimbed Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
295
302
.
30.
Roa
,
M. A.
, and
Suárez
,
R.
,
2015
, “
Grasp Quality Measures: Review and Performance
,”
Auton. Robots
,
38
(
1
), pp.
65
88
.
31.
Parveen
,
S.
,
Kaur
,
S.
,
David
,
S. A. W.
,
Kenney
,
J. L.
,
McCormick
,
W. M.
, and
Gupta
,
R. K.
,
2011
, “
Evaluation of Growth Based Rapid Microbiological Methods for Sterility Testing of Vaccines and Other Biological Products
,”
Vaccine
,
29
(
45
), pp.
8012
8023
.
32.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
269
279
.
33.
Feix
,
T.
,
Pawlik
,
R.
,
Schmiedmayer
,
H.-B.
,
Romero
,
J.
, and
Kragic
,
D.
,
2009
, “
A Comprehensive Grasp Taxonomy
,”
Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation
,
Seattle, WA
, Vol. 2, pp.
2
3
.
34.
Jones
,
L. A.
, and
Lederman
,
S. J.
,
2006
,
Human Hand Function
,
Oxford University Press
,
New York
.
35.
Lederman
,
S. J.
, and
Klatzky
,
R. L.
,
2009
, “
Haptic Perception: A Tutorial
,”
Atten. Percept. Psychophys.
,
71
(
7
), pp.
1439
1459
.
36.
Prattichizzo
,
D.
, and
Trinkle
,
J. C.
,
2016
, “Grasping,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Berlin, Germany
, pp.
955
988
.
37.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
38.
Birglen
,
L.
,
2009
, “
Type Synthesis of Linkage-Driven Self-Adaptive Fingers
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021010
.
You do not currently have access to this content.