Abstract

This work develops a methodology for sensor placement and dynamic sensor scheduling decisions for digital twins. The digital twin data assimilation is posed as a classification problem, and predictive models are used to train optimal classification trees that represent the map from observed data to estimated digital twin states. In addition to providing a rapid digital twin updating capability, the resulting classification trees yield an interpretable mathematical representation that can be queried to inform sensor placement and sensor scheduling decisions. The proposed approach is demonstrated for a structural digital twin of a 12 ft wingspan unmanned aerial vehicle. Offline, training data are generated by simulating scenarios using predictive reduced-order models of the vehicle in a range of structural states. These training data can be further augmented using experimental or other historical data. In operation, the trained classifier is applied to observational data from the physical vehicle, enabling rapid adaptation of the digital twin in response to changes in structural health. Within this context, we study the performance of the optimal tree classifiers and demonstrate how they enable explainable structural assessments from sparse sensor measurements and also inform optimal sensor placement.

References

1.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
,
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,
Springer International Publishing
,
Cham, Switzerland
, pp.
85
113
.
2.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
.
3.
Niederer
,
S. A.
,
Sacks
,
M. S.
,
Girolami
,
M.
, and
Willcox
,
K.
,
2021
, “
Scaling Digital Twins From the Artisanal to the Industrial
,”
Nat. Comput. Sci.
,
1
(
5
), pp.
313
320
.
4.
AIAA Digital Engineering Integration Committee
,
2020
, “
Digital Twin: Definition & Value
.”
5.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, p.
154798
.
6.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
.
7.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
.
8.
Podskarbi
,
M.
, and
Knezevic
,
D. J.
,
2020
, “
Digital Twin for Operations—Present Applications and Future Digital Thread
,”
Offshore Technology Conference
,
Houston, TX
,
May 4–7
, Paper No. OTC-30553-MS.
9.
Kraft
,
J.
, and
Kuntzagk
,
S.
,
2017
, “
Engine Fleet-Management: The Use of Digital Twins From a MRO Perspective
,”
Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards of Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26
, Paper No. GT2017-63336, p. V001T01A007.
10.
Reifsnider
,
K.
, and
Majumdar
,
P.
,
2013
, “
Multiphysics Stimulated Simulation Digital Twin Methods for Fleet Management
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, Paper No. AIAA 2013-1578.
11.
Bruynseels
,
K.
, and
Santoni de Sio
,
F.
,
2018
, “
Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm
,”
Front. Genet.
,
9
, p.
31
.
12.
Rivera
,
L. F.
,
Jiménez
,
M.
,
Angara
,
P.
,
Villegas
,
N. M.
,
Tamura
,
G.
, and
Müller
,
H. A.
,
2019
, “
Towards Continuous Monitoring in Personalized Healthcare Through Digital Twins
,”
Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, CASCON ’19
,
Markham, Ontario, Canada
,
Nov. 4–6
,
IBM Corp.
, pp.
329
335
.
13.
Barricelli
,
B. R.
,
Casiraghi
,
E.
,
Gliozzo
,
J.
,
Petrini
,
A.
, and
Valtolina
,
S.
,
2020
, “
Human Digital Twin for Fitness Management
,”
IEEE Access
,
8
, pp.
26637
26664
.
14.
Hernandez-Boussard
,
T.
,
Macklin
,
P.
,
Greenspan
,
E. J.
,
Gryshuk
,
A. L.
,
Stahlberg
,
E.
,
Syeda-Mahmood
,
T.
, and
Shmulevich
,
I.
,
2021
, “
Digital Twins for Predictive Oncology Will Be a Paradigm Shift for Precision Cancer Care
,”
Nat. Med.
,
27
, pp.
1
2
.
15.
Yu
,
H.
,
Miao
,
C.
,
Leung
,
C.
, and
White
,
T. J.
,
2017
, “
Towards AI-Powered Personalization in MOOC Learning
,”
npj Sci. Learn.
,
2
(
1
), pp.
1
5
.
16.
Mohammadi
,
N.
, and
Taylor
,
J. E.
,
2017
, “
Smart City Digital Twins
,”
2017 IEEE Symposium Series on Computational Intelligence (SSCI)
,
Honolulu, HI
,
Nov. 27–Dec. 1
, pp.
1
5
.
17.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
18.
Zhang
,
Y.
,
de Visser
,
C. C.
, and
Chu
,
Q. P.
,
2018
, “
Aircraft Damage Identification and Classification for Database-Driven Online Flight-Envelope Prediction
,”
J. Guidance Control Dyn.
,
41
(
2
), pp.
449
460
.
19.
Zakrajsek
,
A. J.
, and
Mall
,
S.
,
2017
, “
The Development and Use of a Digital Twin Model for Tire Touchdown Health Monitoring
,”
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Grapevine, TX
,
Jan. 9–13
, Paper No. AIAA 2017-0863.
20.
Zhao
,
W.
,
Gupta
,
A.
,
Regan
,
C. D.
,
Miglani
,
J.
,
Kapania
,
R. K.
, and
Seiler
,
P. J.
,
2019
, “
Component Data Assisted Finite Element Model Updating of Composite Flying-Wing Aircraft Using Multi-level Optimization
,”
Aerosp. Sci. Technol.
,
95
, p.
105486
.
21.
Chinesta
,
F.
,
Cueto
,
E.
,
Abisset-Chavanne
,
E.
,
Duval
,
J. L.
, and
El Khaldi
,
F.
,
2020
, “
Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data
,”
Arch. Comput. Methods Eng.
,
27
(
1
), pp.
105
134
.
22.
Moya
,
B.
,
Badías
,
A.
,
Alfaro
,
I.
,
Chinesta
,
F.
, and
Cueto
,
E.
,
2020
, “
Digital Twins That Learn and Correct Themselves
,”
Int. J. Numer. Methods Eng.
,
123
(
1315
), pp.
3034
3044
.
23.
Yucesan
,
Y. A.
, and
Viana
,
F.
,
2020
, “
A Hybrid Model for Main Bearing Fatigue Prognosis Based on Physics and Machine Learning
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, Paper No. AIAA 2020-1412.
24.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
, and
Willcox
,
K.
,
2020
, “
Toward Predictive Digital Twins Via Component-Based Reduced-Order Models and Interpretable Machine Learning
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
, p.
0418
.
25.
Bertsimas
,
D.
, and
Dunn
,
J.
,
2017
, “
Optimal Classification Trees
,”
Mach. Learn.
,
106
(
7
), pp.
1039
1082
.
26.
Bertsimas
,
D.
, and
Dunn
,
J.
,
2019
,
Machine Learning Under a Modern Optimization Lens
,
Dynamic Ideas LLC
,
Charlestown, MA
.
27.
Brunton
,
B. W.
,
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Sparse Sensor Placement Optimization for Classification
,”
SIAM J. Appl. Math.
,
76
(
5
), pp.
2099
2122
.
28.
Mainini
,
L.
, and
Willcox
,
K. E.
,
2017
, “
Data to Decisions: Real-Time Structural Assessment From Sparse Measurements Affected by Uncertainty
,”
Comput. Struct.
,
182
, pp.
296
312
.
29.
Kapteyn
,
M. G.
,
Pretorius
,
J. V. R.
, and
Willcox
,
K. E.
,
2021
, “
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
,”
Nat. Comput. Sci.
,
1
(
5
), pp.
337
347
.
30.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
,
Huynh
,
D. B. P.
,
Tran
,
M.
, and
Willcox
,
K. E.
,
2020
, “
Data-Driven Physics-Based Digital Twins Via a Library of Component-Based Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
,
23
(
13
), pp.
2986
3003
.
31.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.
32.
Rokach
,
L.
, and
Maimon
,
O.
,
2005
,
Decision Trees
,
Springer US
,
Boston, MA
, pp.
165
192
.
33.
Fisher
,
R. A.
,
1936
, “
The Use of Multiple Measurements in Taxonomic Problems
,”
Ann. Eugenics
,
7
(
2
), pp.
179
188
.
34.
Dua
,
D.
, and
Graff
,
C.
,
2017
, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/ml.
35.
Bertsimas
,
D.
,
Dunn
,
J.
, and
Wang
,
Y.
,
2021
, “
Near-Optimal Nonlinear Regression Trees
,”
Oper. Res. Lett.
,
49
(
2
), pp.
201
206
.
36.
Gurobi Optimization, LLC
, 2019, “
Gurobi Optimizer Reference Manual
.”
37.
Dunn
,
J. W.
,
2018
, “
Optimal Trees for Prediction and Prescription
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
38.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R.
, and
Stone
,
C.
,
2017
,
Classification and Regression Trees
,
Routledge
,
New York
, p.
10
.
39.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
40.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine.
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
41.
Drela
,
M.
,
1999
, “
Integrated Simulation Model for Preliminary Aerodynamic, Structural, and Control-Law Design of Aircraft
,”
40th Structures, Structural Dynamics, and Materials Conference and Exhibit
,
St. Louis, MO
, Paper No. 99-1394.
42.
Drela
,
M.
,
2015
, “
ASWING 5.99 Technical Description—Steady Formulation
,” March.
43.
Interpretable AI, LLC
,
2020
, “
Interpretable AI Documentation
.”
You do not currently have access to this content.