Abstract

High-dimensional model representation (HDMR), decomposing the high-dimensional problem into summands of different order component terms, has been widely researched to work out the dilemma of “curse-of-dimensionality” when using surrogate techniques to approximate high-dimensional problems in engineering design. However, the available one-metamodel-based HDMRs usually encounter the predicament of prediction uncertainty, while current multi-metamodels-based HDMRs cannot provide simple explicit expressions for black-box problems, and have high computational complexity in terms of constructing the model by the explored points and predicting the responses of unobserved locations. Therefore, aimed at such problems, a new stand-alone HDMR metamodeling technique, termed as Dendrite-HDMR, is proposed in this study based on the hierarchical Cut-HDMR and the white-box machine learning algorithm, Dendrite Net. The proposed Dendrite-HDMR not only provides succinct and explicit expressions in the form of Taylor expansion but also has relatively higher accuracy and stronger stability for most mathematical functions than other classical HDMRs with the assistance of the proposed adaptive sampling strategy, named KKMC, in which k-means clustering algorithm, k-Nearest Neighbor classification algorithm and the maximum curvature information of the provided expression are utilized to sample new points to refine the model. Finally, the Dendrite-HDMR technique is applied to solve the design optimization problem of the solid launch vehicle propulsion system with the purpose of improving the impulse-weight ratio, which represents the design level of the propulsion system.

References

1.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
,
1986
, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions
,”
SIAM J. Sci. Statist. Comput.
,
7
(
1
), pp.
639
659
.
2.
Box
,
G.
, and
Draper
,
N.
,
1987
,
Empirical Model-Building and Response Surfaces
,
John Wiley & Sons
,
New York
.
3.
Cleveland
,
W. S.
, and
Devlin
,
S. J.
,
1988
, “
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
,”
J. Am. Stat. Assoc.
,
83
(
403
), pp.
596
610
.
4.
Cressie
,
N.
,
1990
, “
The Origins of Kriging
,”
Math. Geol.
,
22
(
3
), pp.
239
252
.
5.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Spline
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.
6.
Smola
,
A.
, and
Vapnik
,
V.
,
1997
, “Support Vector Regression Machines,”
Advances in Neural Information Processing Systems 9
,
M. C.
Mozer
,
M. I.
Jordan
and
T.
Petsche
, eds.,
MIT Press
,
Cambridge, MA
, pp.
155
161
.
7.
Papadrakakis
,
M.
,
Lagaros
,
N. D.
, and
Tsompanakis
,
Y.
,
1998
, “
Structural Optimization Using Evolution Strategies and Neural Networks
,”
Comput. Meth. Appl. Mech. Eng.
,
156
(
1–4
), pp.
309
333
.
8.
Li
,
Y. H.
,
Wang
,
S. T.
, and
Wu
,
Y. Z.
,
2020
, “
Kriging-Based Unconstrained Global Optimization Through Multi-Point Sampling
,”
Eng. Optimiz.
,
52
(
6
), pp.
1082
1095
.
9.
Qiao
,
P.
,
Wu
,
Y. Z.
, and
Ding
,
J. W.
,
2019
, “
Optimal Control of A Black-box System Based on Surrogate Models by Spatial Adaptive Partitioning Method
,”
ISA Trans.
,
100
, pp.
63
73
.
10.
Romero
,
D. A.
,
Marin
,
V. E.
, and
Amon
,
C. H.
,
2015
, “
Error Metrics and The Sequential Refinement of Kriging Metamodels
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011402
.
11.
Wu
,
H.
,
Zhu
,
Z. F.
, and
Du
,
X. P.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.
12.
Rabitz
,
H.
, and
Aliş
,
ÖF
,
1999
, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2
), pp.
197
233
.
13.
Rabitz
,
H.
,
Aliş
,
ÖF
,
Shorter
,
J.
, and
Shim
,
K.
,
1999
, “
Efficient Input—Output Model Representations
,”
Comput. Phys. Commun.
,
117
(
1
), pp.
11
20
.
14.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
15.
Li
,
G.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
,
2001
, “
High Dimensional Model Representations
,”
J. Phys. Chem. A
,
105
(
33
), pp.
7765
7777
.
16.
Shan
,
S. Q.
, and
Wang
,
G. G.
,
2010
, “
Development of Adaptive RBF-HDMR Model for Approximating High Dimensional Problems
,”
ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference
,
San Diego
, DETC2009-86531, pp.
727
740
.
17.
Shan
,
S. Q.
, and
Wang
,
G. G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051009
.
18.
Shan
,
S. Q.
, and
Wang
,
G. G.
,
2011
, “
Turning Black-Box Functions Into White Functions
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031003
.
19.
Liu
,
H. T.
,
Wang
,
X. F.
, and
Xu
,
S. L.
,
2017
, “
Generalized Radial Basis Function-Based High-Dimensional Model Representation Handling Existing Random Data
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011404
.
20.
Liu
,
H. T.
,
Hervas
,
J. R.
,
Ong
,
Y. S.
,
Cai
,
J. F.
, and
Wang
,
Y.
,
2018
, “
An Adaptive RBF-HDMR Modeling Approach Under Limited Computational Budget
,”
Struct. Multidiscip. Optim.
,
57
(
3
), pp.
1233
1250
.
21.
Wang
,
Q.
, and
Fang
,
H.
,
2020
, “
An Adaptive High-Dimensional Model Representation Method for Reliability Analysis of Geotechnical Engineering Problems
,”
Int. J. Numer. Anal. Methods Geomech.
,
44
(
12
), pp.
1705
1723
.
22.
Wang
,
H.
,
Tang
,
L.
, and
Li
,
G. Y.
,
2011
, “
Adaptive MLS-HDMR Metamodeling Techniques for High Dimensional Problems
,”
Expert Syst. Appl.
,
38
(
11
), pp.
14117
14126
.
23.
Tang
,
L.
,
Wang
,
H.
, and
Li
,
G. Y.
,
2013
, “
Advanced High Strength Steel Springback Optimization by Projection-Based Heuristic Global Search Algorithm
,”
Mater. Des.
,
43
, pp.
426
437
.
24.
Chen
,
L. M.
,
Li
,
E. Y.
, and
Wang
,
H.
,
2016
, “
Time-Based Reflow Soldering Optimization by Using Adaptive Kriging-HDMR Method
,”
Solder. Surf. Mt. Technol.
,
28
(
2
), pp.
101
113
.
25.
Li
,
E. Y.
, and
Wang
,
H.
,
2016
, “
An Alternative Adaptive Differential Evolutionary Algorithm Assisted by Expected Improvement Criterion and Cut-HDMR Expansion and Its Application in Time-Based Sheet Forming Design
,”
Adv. Eng. Softw.
,
97
, pp.
96
107
.
26.
Huang
,
Z. Y.
,
Qiu
,
H. B.
,
Zhao
,
M.
,
Cai
,
X. W.
, and
Gao
,
L.
,
2015
, “
An Adaptive SVR-HDMR Model for Approximating High Dimensional Problems
,”
Eng. Comput.
,
32
(
3
), pp.
643
667
.
27.
Hajikolaei
,
H.
,
Cheng
,
K.
,
and Wang
,
G. H.
, and
G
,
G.
,
2015
, “
Optimization on Metamodeling-Supported Iterative Decomposition
,”
ASME J. Mech. Des.
,
138
(
2
), p.
021401
.
28.
Balu
,
A. S.
, and
Rao
,
B. N.
,
2014
, “
Efficient Assessment of Structural Reliability in Presence of Random and Fuzzy Uncertainties
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051008
.
29.
Cai
,
X. W.
,
Qiu
,
H. B.
,
Gao
,
L.
,
Yang
,
P.
, and
Shao
,
X. Y.
,
2016
, “
An Enhanced RBF-HDMR Integrated With An Adaptive Sampling Method for Approximating High Dimensional Problems in Engineering Design
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1209
1229
.
30.
Li
,
W. P.
,
Gu
,
B.
,
Ji
,
N. Z.
, and
Chen
,
Z. F.
,
2019
, “
High Dimensional Expression of Combined Approximation Model
,”
Int. J. Veh. Des.
,
79
(
1
), pp.
1
17
.
31.
Zhang
,
N.
,
Wang
,
P.
,
Dong
,
H. C.
, and
Li
,
T. B.
,
2020
, “
Shape Optimization for Blended-Wing-Body Underwater Glider Using An Advanced Multi-Surrogate-Based High-Dimensional Model Representation Method
,”
Eng. Optimiz.
,
52
(
12
), pp.
2080
2099
.
32.
Liu
,
G.
, and
Wang
,
J.
,
2020
, “
Dendrite Net: A White-Box Module for Classification, Regression, and System Identification
,”
IEEE T. Cybern.
, pp.
1
14
.
33.
Albert
,
G.
,
Timothy Adam
,
Z.
,
Pawel
,
F.
,
Felix
,
B.
,
Athanasia
,
P.
,
Panayiota
,
P.
,
Martin
,
H.
,
Imre
,
V.
, and
Matthew Evan
,
L.
,
2020
, “
Dendritic Action Potentials and Computation in Human Layer 2/3 Cortical Neurons
,”
Science
,
367
(
6473
), pp.
83
87
.
34.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
35.
Liu
,
H.
,
Ong
,
Y. S.
, and
Cai
,
J.
,
2017
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscip. Optim
,
57
(
1
), pp.
393
416
.
36.
Wei
,
X.
,
Wu
,
Y. Z.
, and
Chen
,
L. P.
,
2012
, “
A New Sequential Optimal Sampling Method for Radial Basis Functions
,”
Appl. Math. Comput.
,
218
(
19
), pp.
9635
9646
.
37.
Yue
,
X.
,
Zhang
,
J.
,
Gong
,
W.
,
Luo
,
M.
, and
Duan
,
L.
,
2021
, “
An Adaptive PCE-HDMR Metamodeling Approach for High-Dimensional Problems
,”
Struct. Multidiscip. Optim
,
64
(
1
), pp.
141
162
.
38.
Jones
,
D. R.
,
2001
, “Direct Global Optimization Algorithm,”
Encyclopedia of Optimization
,
C. A.
Floudas
, and
P. M.
Pardalos
, eds.,
Springer US
,
Boston, MA
, pp.
431
440
.
39.
Sutton
,
G. P.
,
2010
,
Rocket Propulsion Elements
, 7th ed.,
John Wiley & Sons, Inc.
,
New York.
You do not currently have access to this content.