Abstract

The goal of this work is to study the way student designers use design for additive manufacturing (DfAM) rules or heuristics. It can be challenging for novice designers to create successful designs for additive manufacturing (AM), due to its recent surge in popularity and lack of formal education or training. A study was carried out to investigate the way novices apply DfAM heuristics when they receive them at different points in the design process. A design problem was presented to students, and three different groups of student participants were given a lecture on DfAM heuristics at three different points in the design process: before the initial design, between the initial design and redesign, and after the redesign. The novelty and quality of each of the resulting designs were evaluated. Results indicate that although the DfAM heuristics lecture had no impact on the overall quality of the designs generated, participants who were given the heuristics lecture after the initial design session produced designs that were better-suited for 3D printing in the second phase of the design activity. However, receiving this additional information appears to prevent students from creatively iterating upon their initial designs, as participants who received heuristic information between the design sessions experienced a decrease in novelty between the two sessions. Additionally, receiving the heuristics lecture increased all students’ perceptions of their ability to perform DfAM-related tasks. These results validate the practicality of design heuristics in lecture form as AM training tools while also emphasizing the importance of iteration in the design process.

References

1.
Fillingim
,
K. B.
,
Nwaeri
,
R. O.
,
Paredis
,
C. J.
,
Rosen
,
D.
, and
Fu
,
K.
,
2020
, “
Examining the Effect of Design for Additive Manufacturing Rule Presentation on Part Redesign Quality
,”
J. Eng. Des.
,
31
(
8–9
), pp.
427
460
.
2.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
3.
Prabhu
,
R.
,
Bracken
,
J.
,
Armstrong
,
C. B.
,
Jablokow
,
K.
,
Simpson
,
T.
, and
Meisel
,
N. A.
,
2020
, “
Additive Creativity: Investigating the Use of Design for Additive Manufacturing to Encourage Creativity in the Engineering Design Industry
,”
Int. J. Des. Creat. Innov.
,
8
(
4
), pp.
198
222
.
4.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2017
, “
Design Heuristics for Additive Manufacturing
,”
Proceedings of the 21st International Conference on Engineering Design (ICED 17), Vol 5: Design for X, Design to X
,
Vancouver, Canada
,
Aug. 21–25
.
5.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
6.
Urbanic
,
R. J.
, and
Hedrick
,
R.
,
2016
, “
Fused Deposition Modeling Design Rules for Building Large, Complex Components
,”
Comput. Aided Des. Appl.
,
13
(
3
), pp.
348
368
.
7.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2008
, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
(
3
), pp.
203
221
.
8.
Blösch-Paidosh
,
A.
,
Ahmed-Kristensen
,
S.
, and
Shea
,
K.
,
2019
, “
Evaluating the Potential of Design for Additive Manufacturing Heuristic Cards to Stimulate Novel Product Redesigns
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
9.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
10.
Najmon
,
J. C.
,
Raeisi
,
S.
, and
Tovar
,
A.
,
2019
,
Additive Manufacturing for the Aerospace Industry
,
Elsevier
, pp.
7
31
.
11.
Benabdellah
,
A. C.
,
Bouhaddou
,
I.
,
Benghabrit
,
A.
, and
Benghabrit
,
O.
,
2019
, “
A Systematic Review of Design for X Techniques From 1980 to 2018: Concepts, Applications, and Perspectives
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9
), pp.
3473
3502
.
12.
Kuo
,
T. C.
,
Huang
,
S. H.
, and
Zhang
,
H. C.
,
2001
, “
Design for Manufacture and Design for ‘X': Concepts, Applications, and Perspectives
,”
Comput. Ind. Eng.
,
41
(
3
), pp.
241
260
.
13.
Rosen
,
D. W.
,
2007
, “
Design for Additive Manufacturing: A Method to Explore Unexplored Regions of the Design Space
,”
International Solid Freeform Fabrication Symposium.
,
Austin, TX
,
Aug. 6–8
.
14.
Doubrovski
,
Z.
,
Verlinden
,
J. C.
, and
Geraedts
,
J. M.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
,
Washington, DC
,
Aug. 28–31
.
15.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
, et al
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
16.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021013
.
17.
Thrimurthulu
,
K.
,
Pandey
,
P. M.
, and
Reddy
,
N. V.
,
2004
, “
Optimum Part Deposition Orientation in Fused Deposition Modeling
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
585
594
.
18.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1247
1254
.
19.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
20.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2016
, “
Evidence-Based Design Heuristics for Idea Generation
,”
Des. Stud.
,
46
, pp.
95
124
.
21.
Yilmaz
,
S.
,
Seifert
,
C.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
Design Heuristics in Innovative Products
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071102
.
22.
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2011
, “
Creativity Through Design Heuristics: A Case Study of Expert Product Design
,”
Des. Stud.
,
32
(
4
), pp.
384
415
.
23.
Daly
,
S. R.
,
Yilmaz
,
S.
,
Christian
,
J. L.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2012
, “
Design Heuristics in Engineering Concept Generation
,”
J. Eng. Educ.
,
101
(
4
), pp.
601
629
.
24.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2015
, “
How do Designers Generate New Ideas? Design Heuristics Across Two Disciplines
,”
Des. Sci.
,
1
, p.
e4
.
25.
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2010
, “
Cognitive Heuristics in Design: Instructional Strategies to Increase Creativity in Idea Generation
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
24
(
3
), p.
335
.
26.
Daly
,
S. R.
,
Christian
,
J. L.
,
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2011
, “
Teaching Design Ideation
,”
2011 ASEE Annual Conference & Exposition
,
Vancouver, Canada
,
June 26–29
.
27.
Daly
,
S. R.
,
Christian
,
J. L.
,
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2012
, “
Assessing Design Heuristics for Idea Generation in an Introductory Engineering Course
,”
Int. J. Eng. Educ.
,
28
(
2
), p.
463
.
28.
Murphy
,
L.
,
Daly
,
S. R.
,
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2017
, “
Supporting Novice Engineers in Idea Generation Using Design Heuristics
,”
ASEE Annual Conference & Exposition
,
Columbus, OH
,
June 24–28
.
29.
Kramer
,
J.
,
Daly
,
S. R.
,
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2015
, “
Investigating the Impacts of Design Heuristics on Idea Initiation and Development
,”
Adv. Eng. Educ.
,
4
(
4
), p.
1
.
30.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
.
31.
Perez
,
K. B.
,
Anderson
,
D. S.
, and
Wood
,
K. L.
,
2015
, “
Crowdsourced Design Principles for Leveraging the Capabilities of Additive Manufacturing
,”
International Conference on Engineering Design
,
Politecnico di Milano, Italy
,
July 27–30
.
32.
Perez
,
B.
,
Hilburn
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2019
, “
Design Principle-Based Stimuli for Improving Creativity During Ideation
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
2
), pp.
493
503
.
33.
Prabhu
,
R.
,
2018
, “
Investigating the Effect of Design for Additive Manufacturing Education on Student Design Processes and Creativity
,”
M.S. thesis
,
School of Engineering Design, Technology, and Professional Programs, Pennsylvania State University
,
University Park, PA
.
34.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and its Outcomes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
042001
.
35.
Keaveney
,
S. G.
, and
Dowling
,
D. P.
,
2018
, “
Application of Additive Manufacturing in Design & Manufacturing Engineering Education
,”
2018 2nd International Symposium on Small-Scale Intelligent Manufacturing Systems (SIMS)
,
Cavan, Ireland
,
Apr. 16–18
.
36.
Ferchow
,
J. F.
,
Klahn
,
C.
, and
Meboldt
,
M.
,
2018
, “
Enabling Graduated Students to Design for Additive Manufacturing Through Teaching and Experience Transfer
,”
Proceedings of the 20th International Conference on Engineering and Product Design Education
,
London, UK
,
Sept. 6–7
.
37.
Lippert
,
B.
,
Leuteritz
,
G.
, and
Lachmayer
,
R.
,
2017
, “
An Approach to Implement Design for Additive Manufacturing in Engineering Studies
,”
21st International Conference on Engineering Design
,
Vancouver, Canada
,
Aug. 21–25
.
38.
Go
,
J.
, and
Hart
,
A. J.
,
2016
, “
A Framework for Teaching the Fundamentals of Additive Manufacturing and Enabling Rapid Innovation
,”
Addit. Manuf.
,
10
, pp.
76
87
.
39.
Laverne
,
F.
, and
Segonds
,
F.
,
2017
, “
Enriching Design With X Through Tailored Additive Manufacturing Knowledge: a Methodological Proposal
,”
Int. J. Interact. Des. Manuf.
,
11
(
2
), pp.
279
288
.
40.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: an Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
41.
Yang
,
S.
,
Page
,
T.
, and
Zhao
,
Y. F.
,
2019
, “
Understanding the Role of Additive Manufacturing Knowledge in Stimulating Design Innovation for Novice Designers
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021703
.
42.
Moss
,
J.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2007
, “
The Influence of Open Goals on the Acquisition of Problem-Relevant Information
,”
J. Exp. Psychol.: Learn. Mem. Cogn.
,
33
(
5
), pp.
867
891
.
43.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
44.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
45.
Sio
,
U. N.
, and
Ormerod
,
T. C.
,
2009
, “
Does Incubation Enhance Problem Solving? A Meta-Analytic Review
,”
Psychol. Bull.
,
135
(
1
), pp.
94
120
.
46.
Yang
,
H.
,
Chattopadhyay
,
A.
,
Zhang
,
H.
, and
Dahl
,
D. W.
,
2012
, “
Unconscious Creativity: When Can Unconscious Thought Outperform Conscious Thought?
,”
J. Consum. Psychol.
,
22
(
4
), pp.
573
581
.
47.
Ritter
,
S. M.
, and
Dijksterhuis
,
A.
,
2014
, “
Creativity—The Unconscious Foundations of the Incubation Period
,”
Front. Hum. Neurosci.
,
8
, p.
215
.
48.
Tsenn
,
J.
,
Atilola
,
O.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
,
2014
, “
The Effects of Time and Incubation on Design Concept Generation
,”
Des. Stud.
,
35
(
5
), pp.
500
526
.
49.
“Ultimaker Cura,” Ultimaker, https://ultimaker.com/software/ultimaker-cura, Accessed March 28, 2021.
50.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4
,”
J. Laser Appl.
,
27
(
S1
), p.
S14001
.
51.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
52.
Clark-Carter
,
D.
,
1997
,
Doing Quantitative Psychological Research: From Design to Report, East Sussex
,
Psychology Press
,
UK
.
53.
Murre
,
J. M.
, and
Dros
,
J.
, and
Chialvo
,
D. R.
,
2015
, “
Replication and Analysis of Ebbinghaus’ Forgetting Curve
,”
PLoS One
,
10
(
7
), p.
e0120644
.
54.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031121
.
55.
Lepp
,
A.
,
Barkley
,
J. E.
,
Karpinski
,
A. C.
, and
Singh
,
S.
,
2019
, “
College Students’ Multitasking Behavior in Online Versus Face-to-Face Courses
,”
SAGE Open
,
9
(
1
), p.
215824401882450
.
56.
Orne
,
M. T.
,
1962
, “
On the Social Psychology of the Psychological Experiment: With Particular Reference to Demand Characteristics and Their Implications
,”
Am. Psychol.
,
17
(
11
), pp.
776
783
.
57.
Nichols
,
A. L.
, and
Maner
,
J. K.
,
2008
, “
The Good-Subject Effect: Investigating Participant Demand Characteristics
,”
J. Gen. Psychol.
,
135
(
2
), pp.
151
166
.
58.
Murdock
,
B. B.
, Jr.
,
1962
, “
The Serial Position Effect of Free Recall
,”
J. Exp. Psychol.
,
64
(
5
), pp.
482
488
.
59.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
, and
Meisel
,
N. A.
,
2021
, “
Fresh in My Mind! Investigating the Effects of the Order of Presenting Opportunistic and Restrictive Design for Additive Manufacturing Content on Students’ Creativity
,”
J. Eng. Des.
,
32
(
4
), pp.
187
212
.
You do not currently have access to this content.