Abstract

This article presents a piezo-actuated microgripper characterized by large amplification ratio and compact structure size. The microgripper is actuated by a piezo-stack actuator that is integrated with a two-stage displacement amplifier to achieve large travel range. A new design methodology “flexure hinge individualized design” (FHID) was proposed to realize large amplification ratio. According to this methodology, each flexure hinge was designed personally based on force condition of the piviot to reconfigure the motion stiffness of the compliant microgripper so that the parasitic motion and displacement loss could be eliminated. Consequently, a 52-amplification ratio amplifier was obtained. The developed microgripper was modeled via kinematics and Castigliano’s displacement theorem, respectively. Finite element analysis and the experimental studies were conducted to evaluate the characteristics of the microgripper. The results show that the motion stroke of the gripper tip is 917 μm, and the structure dimension is 62 mm × 42 mm × 12 mm. The design methodology FHID is generic and can be extended to other compliant mechanisms.

References

1.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2016
, “
Design and Control of a Compliant Microgripper With a Large Amplification Ratio for High-Speed Micro Manipulation
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1262
1271
.
2.
Wang
,
D. H.
,
Yang
,
Q.
, and
Dong
,
H. M.
,
2013
, “
A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
138
147
.
3.
Dsouza
,
R. D.
,
Navin
,
K. P.
,
Theodoridis
,
T.
, and
Sharma
,
P.
,
2018
, “
Design, Fabrication and Testing of a 2 DOF Compliant Flexural Microgripper
,”
Microsyst. Technol.
,
24
(
9
), pp.
3867
3883
.
4.
Liang
,
C.
,
Wang
,
F.
,
Shi
,
B.
,
Huo
,
Z.
,
Zhou
,
K.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2018
, “
Design and Control of a Novel Asymmetrical Piezoelectric Actuated Microgripper for Micromanipulation
,”
Sens. Actuators, A
,
269
, pp.
227
237
.
5.
Sun
,
X.
,
Chen
,
W.
,
Tian
,
Y.
,
Fatikow
,
S
,
Zhou
,
R.
,
Zhang
,
J.
, and
Mikczinski
,
M.
,
2013
, “
A Novel Flexure-Based Microgripper With Double Amplification Mechanisms for Micro/Nano Manipulation
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
085002
.
6.
Yang
,
Y.
,
Wei
,
Y.
,
Lou
,
J.
,
Xie
,
F.
, and
Fu
,
L.
,
2016
, “
Development and Precision Position/Force Control of a New Flexure-Based Microgripper
,”
J. Micromech. Microeng.
,
26
(
1
), p.
15005
.
7.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism
,”
Int. J. Adv. Rob. Syst.
,
11
(
12
), p.
192
.
8.
Wulfsberg
,
J. P.
, and
Lammering
,
R.
,
Schuster
,
T.
,
Kong
,
N.
,
Rösner
,
M.
,
Bauma
,
E.
, and
Friedrich
,
R.
,
2013
, “
A Novel Methodology for the Development of Compliant Mechanisms With Application to Feed Units
,”
Prod. Eng.
,
7
(
5
), pp.
503
510
.
9.
Chen
,
F.
,
Du
,
Z.
,
Yang
,
M.
,
Gao
,
F.
,
Dong
,
W.
, and
Zhang
,
D.
,
2018
, “
Design and Analysis of a Three-Dimensional Bridge-Type Mechanism Based on the Stiffness Distribution
,”
Precis. Eng.
,
51
, pp.
48
58
.
10.
Wang
,
R.
,
Zhou
,
X.
, and
Zhu
,
Z.
,
2013
, “
Development of a Novel Sort of Exponent-Sine-Shaped Flexure Hinges
,”
Rev. Sci. Instrum.
,
84
(
9
), p.
095008
.
11.
Liu
,
M.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2016
, “
Design and Analysis of a High-Accuracy Flexure Hinge
,”
Rev. Sci. Instrum.
,
87
(
5
), p.
55106
.
12.
Dong
,
W.
,
Chen
,
F.
, and
Yang
,
M.
,
2018
, “
Development of a High-Efficient Bridge-Type Mechanism Based on Negative Stiffness
,”
Smart Mater. Struct.
,
26
(
9
), p.
095053
.
13.
Dong
,
W.
,
Chen
,
F.
,
Gao
,
F.
,
Yang
,
M.
,
Sun
,
L.
,
Du
,
Z.
,
Tang
,
J.
, and
Zhang
,
D.
,
2018
, “
Development and Analysis of a Bridge-Lever-Type Displacement Amplifier Based on Hybrid Flexure Hinges
,”
Precis. Eng.
,
54
, pp.
171
181
.
14.
J ZW
,
R. O. P.
, and
GM
,
M.
,
2008
, “
A New Compliant Mechanical Amplifier Based on a Symmetric Five-Bar Topology
,”
ASME J. Mech. Des.
,
130
(
10
), p.
104501
.
15.
Xu
,
Q.
, and
Li
,
Y.
,
2011
, “
Analytical Modeling, Optimization and Testing of a Compound Bridge-Type Compliant Displacement Amplifier
,”
Mech. Mach. Theory
,
46
(
2
), pp.
183
200
.
16.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2015
, “
Design of a Piezoelectric-Actuated Microgripper With a Three-Stage Flexure-Based Amplification
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2205
2213
.
17.
Zubir
,
M. N. M.
,
Shirinzadeh
,
B.
, and
Tian
,
Y.
,
2009
, “
Development of a Novel Flexure-Based Microgripper for High Precision Micro-Object Manipulation
,”
Sens. Actuators, A
,
150
(
2
), pp.
257
266
.
18.
Zubir
,
M. N. M.
,
Shirinzadeh
,
B.
, and
Tian
,
Y.
,
2009
, “
A New Design of Piezoelectric Driven Compliant-Based Microgripper for Micromanipulation
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2248
2264
.
19.
Xu
,
Q.
,
2014
, “
Design and Smooth Position/Force Switching Control of a Miniature Gripper for Automated Microhandling
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1023
1032
.
20.
Chen
,
W.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2016
, “
A Novel Microgripper Hybrid Driven by a Piezoelectric Stack Actuator and Piezoelectric Cantilever Actuators
,”
Rev. Sci. Instrum.
,
87
(
11
), p.
115003
.
You do not currently have access to this content.