Abstract

How to enlarge the output displacement is a key issue in the research field of microgrippers. It is difficult to further enlarge the output displacement for the traditional displacement transmission mechanism (DTM). In this research, a two-stage amplification cylinder-driven DTM based on the compliant mechanisms is designed to realize the displacement output expansion. The opening and closing of the clamping jaws is driven by the air cylinder to enlarge the output displacement of the microgripper. According to the analysis of statics model of the mechanism, the relationship between the output displacement of the microgripper and the driving pressure of the cylinder is established. The magnification of the microgripper is obtained using a dynamic model. Moreover, based on the finite element analysis, the mechanical structure parameters are optimized. The microgripper was fabricated by utilizing wire electro discharge machining (WEDM) technique, and then a series of experiments were carried out to obtain the relationship between the displacement and the driving pressure. It is found that the maximum output displacement measured is 1190.4 μm under the pressure of 0–0.6 MPa, corresponding to the magnification of 47.63. Compared with the results of finite element analysis and theoretical calculation, the test results have a discrepancy of 2.39% and 6.62%, respectively. The microgripper has successfully grasped a variety of micro-parts with irregular shapes, and parallel grasping can be achieved, demonstrating the potential application of this design in the field of micromanipulation.

References

1.
Zang
,
H.
,
Zhang
,
X.
,
Zhu
,
B.
, and
Fatikow
,
S.
,
2019
, “
Recent Advances in Non-Contact Force Sensors Used for Micro/Nano Manipulation
,”
Sens. Actuators A
,
296
, pp.
155
177
.
2.
Niaki
,
M.
, and
Nikoobin
,
A.
,
2019
, “
Design and Fabrication a Long-Gripping-Range Microgripper with Active and Passive Actuators
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
43
(
3
), pp.
575
585
.
3.
Madl
,
C.
,
Heilshorn
,
C.
, and
Blau
,
H.
,
2018
, “
Bioengineering Strategies to Accelerate Stem Cell Therapeutics
,”
Nature.
,
557
(
7705
), pp.
335
342
.
4.
Inah
,
K.
,
Myoung-Hee
,
K.
, and
Sinye
,
L.
,
2015
, “
Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration Among Female Workers in the Microelectronics Industry in South Korea
,”
PloS one.
,
10
(
5
), p.
e0123679
.
5.
Jiang
,
J.
,
Wang
,
S.
,
Liu
,
K.
, and
Zhang
,
X.
,
2016
, “
Development of Optical Fiber Temperature Sensor for Aviation Industry
,”
2016 15th International Conference on Optical Communications and Networks (ICOCN)
,
IEEE
.
6.
Yong
,
Y.
,
Bhikkaji
,
B.
, and
Reza Moheimani
,
S.
,
2013
, “
Design, Modeling, and FPAA-Based Control of a High-Speed Atomic Force Microscope Nanopositioner
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
1060
1071
.
7.
Guo
,
Z.
,
Tian
,
Y.
,
Liu
,
X.
, and
Wang
,
F.
,
2017
, “
Zhou C and Zhang D. Experimental Investigation of the Tip Based Micro/Nano Machining
,”
Appl. Surf. Sci.
,
426
, pp.
406
417
.
8.
Xu
,
Q.
, and
Jia
,
Y.
,
2013
, “
MEMS Microgripper Actuators and Sensors: The State-of-the-Art Survey
,”
Recent Pat. Mech. Eng.
,
6
(
2
), pp.
132
142
.
9.
Aia
,
W.
, and
Xu
,
Q.
,
2014
, “
Overview of Flexure-Based Compliant Microgrippers
,”
J. Soc. Nav. Archit. Korea
,
1
(
1
), pp.
1
19
.
10.
Graham
,
W.
, and
Boris
,
S.
,
2016
, “
Enrico M and Rebecca C. 3C-Silicon Carbide Microresonators for Timing and Frequency Reference
,”
Micromachines
,
7
(
11
), p.
208
.
11.
Verma
,
M.
,
Lafarga
,
V.
, and
Collette
,
C.
,
2020
, “
Perfect Collocation Using Self-Sensing Electromagnetic Actuator: Application to Vibration Control of Flexible Structures
,”
Sens. Actuators A Phys.
,
313
, p.
112210
.
12.
Taccola
,
S.
,
Greco
,
F.
,
Sinibaldi
,
E.
,
Mondini
,
A.
,
Mazzolai
,
B.
, and
Mattoli
,
V.
,
2015
, “
Soft Actuators: Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators (Adv. Mater. 10/2015)
,”
Adv. Mater.
,
27
(
10
), pp.
1637
1637
.
13.
Luis
,
V.
,
Luz
,
A.
,
Max
,
G.
,
Jean-Pierre
,
R.
, and
Agustin
,
H.
,
2018
, “
Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications
,”
Sensors
,
18
(
5
), p.
1664
.
14.
Hoxhold
,
B.
, and
Büttgenbach
,
S.
,
2010
, “
Easily Manageable, Electrothermally Actuated Silicon Micro Gripper
,”
Microsyst. Technol.
,
16
(
8
), pp.
1609
1617
.
15.
Knick
,
C.
,
Sharar
,
D.
,
Wilson
,
A.
,
Smith
,
G.
,
Morris
,
C.
, and
Bruck
,
H.
,
2019
, “
High Frequency, low Power, Electrically Actuated Shape Memory Alloy (SMA) MEMS Bimorph Thermal Actuators
,”
J. Micromech. Microeng.
,
29
(
7
), p.
075005
.
16.
Mehrabi
,
H.
, and
Aminzahed
,
I.
,
2019
, “
Design and Testing of a Microgripper with SMA Actuator for Manipulation of Micro Components
,”
Microsyst. Technol.
,
26
(
2
), pp.
1
6
.
17.
Lu
,
S.
,
Zhang
,
J.
,
Liu
,
Y.
,
Zheng
,
H.
, and
Liu
,
W.
,
2019
, “
Droplet Formation Study of a Liquid Micro-Dispenser Driven by a Piezoelectric Actuator
,”
Smart Mater. Struct.
,
28
(
5
), p.
055003
.
18.
Yang
,
Z.
,
Forrester
,
J.
,
Davidson
,
J.
,
Foster
,
M.
, and
Stone
,
D.
,
2020
, “
Resonant current estimation and phase-locked loop feedback design for piezoelectric transformer-based power supplies
,”
IEEE Trans. Power Electron.
, pp.
(99), 1
.
19.
Wang
,
K.
, and
Wang
,
B.
,
2012
, “
The Electromechanical Coupling Behavior of Piezoelectric Nanowires: Surface and Small-Scale Effects
,”
EPL
,
97
(
6
), pp.
66005
.
20.
Jouaneh
,
M.
, and
Yang
,
R.
,
2003
, “
Modeling of Flexure-Hinge Type Lever Mechanisms
,”
Precis. Eng.
,
27
(
4
), pp.
407
418
.
21.
Zheng
,
Y.
,
Gong
,
J.
, and
Zhang
,
Y.
,
2017
, “
Stiffness Analysis of a Flexible Lever Magnifying Mechanism Based on Transfer Matrix Method
,”
Beijing Hangkong Hangtian Daxue Xuebao/J. Beijing Univ. Aeronaut. Astronaut.
,
43
(
4
), pp.
849
856
.
22.
Ma
,
H. W.
,
Yao
,
S. M.
,
Wang
,
L. Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuators A Phys.
,
132
(
2
), pp.
730
736
.
23.
Qi
,
K.
,
Xiang
,
Y.
,
Fang
,
C.
,
Zhang
,
Y.
, and
Yu
,
C.
,
2015
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Mechanism
,”
Mech. Mach. Theory
,
87
, pp.
45
56
.
24.
Zhang
,
C.
,
Zhang
,
X.
,
Chen
,
J.
, and
Zhang
,
S.
,
2014
, “
Linear Modeling for Input-Output Relations of a Rhombic Micro-Displacement Piezoelectric Actuator
,”
Hsi-An Chiao Tung Ta Hsueh/J. Xi'an Jiaotong Univ.
,
48
(
5
), pp.
102
106
.
25.
Shao
,
S.
,
Xie
,
S.
,
Xie
,
M.
, and
Zhang
,
S.
,
2016
, “
Stroke Maximizing and High Efficient Hysteresis Hybrid Modeling for a Rhombic Piezoelectric Actuator
,”
Mech. Syst. Sig. Process.
,
75
, pp.
631
647
.
26.
Chen
,
W.
,
2017
, “
Research on Piezoelectric Driven Microgripper Based on Compliant Mechanisms
,”
South China Univ. Technol.
27.
Das
,
T.
,
Shirinzadeh
,
B.
,
Ghafarian
,
M.
,
Al-Jodah
,
A.
, and
Pinskier
,
J.
,
2020
, “
Characterization of a Compact Piezoelectric Actuated Microgripper Based on Double-Stair Bridge-Type Mechanism
,”
J. Micro-Bio Rob.
,
16
(
12
), pp.
79
92
.
28.
Xing
,
Q.
,
2015
, “
Design of Asymmetric Flexible Micro-Gripper Mechanism Based on Flexure Hinges
,”
Adv. Mech. Eng.
,
7
(
6
), pp.
1
8
.
29.
Feng
,
F.
,
Cui
,
Y.
,
Xue
,
F.
, and
Wu
,
L.
,
2012
, “
Design of a New Piezo-Electric Micro-Gripper Based on Flexible Magnifying Mechanism
,”
Appl. Mech. Mater.
,
201
, pp.
907
911
.
30.
Yang
,
Y.
,
Wei
,
Y.
,
Lou
,
J.
,
Tian
,
G.
,
Zhao
,
X.
, and
Fu
,
L.
,
2015
, “
A New Piezo-Driven Microgripper Based on the Double-Rocker Mechanism
,”
Smart Mater. Struct.
,
24
(
7
), p.
075031
.
31.
Liang
,
C.
,
Zhao
,
X.
,
Wang
,
F.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2016
, “
Design and Control of a Compliant Microgripper With a Large Amplification Ratio for High-Speed Micro Manipulation
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1262
1271
.
32.
Liang
,
C.
,
Wang
,
F.
,
Shi
,
B.
,
Huo
,
Z.
,
Zhou
,
K.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2018
, “
Design and Control of a Novel Asymmetrical Piezoelectric Actuated Microgripper for Micromanipulation
,”
Sens. Actuators A Phys.
,
269
, pp.
227
237
.
33.
Vedant
,
V.
, and
Allison
,
J.
,
2020
, “
Pseudo-Rigid-Body Dynamic Models for Design of Compliant Members
,”
ASME J. Mech. Des.
,
142
(
5
), pp.
1
22
.
34.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
, pp.
1
120
.
You do not currently have access to this content.