Abstract

Finite element-based crashworthiness optimization is extensively used to improve the safety of motor vehicles. However, the responses of crash simulations are characterized by a high level of numerical noise, which can hamper the blind use of surrogate-based design optimization methods. It is therefore essential to account for the noise-induced uncertainty when performing optimization. For this purpose, a surrogate, referred to as non-deterministic kriging (NDK), can be used. It models the noise as a non-stationary stochastic process, which is added to a traditional deterministic kriging surrogate. Based on the NDK surrogate, this study proposes an optimization algorithm tailored to account for both epistemic uncertainty, due to the lack of data, and irreducible aleatory uncertainty, due to the simulation noise. The variances are included within an extension of the well-known expected improvement infill criterion referred to as modified augmented expected improvement (MAEI). Because the proposed optimization scheme requires an estimate of the aleatory variance, it is approximated through a regression kriging, referred to as variance kriging, which is iteratively refined. The proposed algorithm is tested on a set of analytical functions and applied to the optimization of an occupant restraint system (ORS) during a crash.

References

1.
Jeong
,
S.
,
Yoon
,
S.
,
Xu
,
S.
, and
Park
,
G.
,
2010
, “
Non-Linear Dynamic Response Structural Optimization of An Automobile Frontal Structure Using Equivalent Static Loads
,”
Proc. Inst. Mech. Eng., Part D: J. Autom. Eng.
,
224
(
4
), pp.
489
501
.
2.
Parrish
,
A.
,
Rais-Rohani
,
M.
, and
Najafi
,
A.
,
2012
, “
Crashworthiness Optimisation of Vehicle Structures With Magnesium Alloy Parts
,”
Int. J. Crashworthiness
,
17
(
3
), pp.
259
281
.
3.
Liu
,
K.
,
Wu
,
T.
,
Detwiler
,
D.
,
Panchal
,
J.
, and
Tovar
,
A.
,
2019
, “
Design for Crashworthiness of Categorical Multimaterial Structures Using Cluster Analysis and Bayesian Optimization
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121701
.
4.
Hamza
,
K.
, and
Saitou
,
K.
,
2011
, “
Automated Vehicle Structural Crashworthiness Design Via a Crash Mode Matching Algorithm
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011003
.
5.
Shin
,
M.
,
Kang
,
B.
, and
Park
,
G.
,
2005
, “
Application of the Multidisciplinary Design Optimization Algorithm to the Design of a Belt-Integrated Seat While Considering Crashworthiness
,”
Proc. Inst. Mech. Eng., Part D: J. Autom. Eng.
,
219
(
11
), pp.
1281
1292
.
6.
Bai
,
Z.
,
Jiang
,
B.
,
Zhu
,
F.
, and
Cao
,
L.
,
2014
, “
Optimizing the Passenger Air Bag of An Adaptive Restraint System for Multiple Size Occupants
,”
Traffic Injury Prevention
,
15
(
6
), pp.
556
563
.
7.
Gu
,
X.
,
Lu
,
J.
, and
Wang
,
H.
,
2015
, “
Reliability-Based Design Optimization for Vehicle Occupant Protection System Based on Ensemble of Metamodels
,”
Struct. Multidiscipl. Optim.
,
51
(
2
), pp.
533
546
.
8.
Liu
,
Q.
,
Wu
,
X.
,
Han
,
X.
,
Liu
,
J.
,
Zhang
,
Z.
, and
Guo
,
S.
,
2020
, “
Sensitivity Analysis and Interval Multi-Objective Optimization for An Occupant Restraint System Considering Craniocerebral Injury
,”
ASME J. Mech. Des.
,
142
(
2
), p.
024502
.
9.
Newman
,
J. A.
,
1980
, “
Head Injury Criteria in Automotive Crash Testing
,”
SAE Trans.
,
89
(
4
), pp.
4098
4115
.
10.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BRIC)
,”
Stapp Car Crash J.
,
57
, pp.
243
266
.
11.
Forrester
,
A. I.
,
Keane
,
A. J.
, and
Bressloff
,
N. W.
,
2006
, “
Design and Analysis of “Noisy” Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.
12.
Edwards
,
J. R.
,
2002
,
Alternatives to Difference Scores: Polynomial Regression Analysis and Response Surface Methodology, Measuring and Analyzing Behavior in Organizations: Advances in Measurement and Data Analysis
,
Jossey-Bass
,
San Francisco, CA
, pp.
350
400
.
13.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
,
1986
, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions
,”
SIAM J. Sci. Stat. Comput.
,
7
(
2
), pp.
639
659
.
14.
Broomhead
,
D. S.
, and
Lowe
,
D.
,
1988
,
Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks
,
Royals Signals and Radar Establishment Malvern
,
UK
.
15.
Buhmann
,
M. D.
,
2003
,
Radial Basis Functions: Theory and Implementations
,
Cambridge Monographs on Applied and Computational Mathematics
,
Cambridge University Press
.
16.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
17.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
,
1989
, “
Designs for Computer Experiments
,”
Technometrics
,
31
(
1
), pp.
41
47
.
18.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2018
,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
19.
Forsberg
,
J.
, and
Nilsson
,
L.
,
2005
, “
On Polynomial Response Surfaces and Kriging for Use in Structural Optimization of Crashworthiness
,”
Struct. Multidiscipl. Optim.
,
29
(
3
), pp.
232
243
.
20.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M.
,
2005
, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
(
25–26
), pp.
2121
2136
.
21.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
J. Mech. Des.
,
129
(
4
), pp.
370
380
.
22.
Koziel
,
S.
, and
Leifsson
,
L.
,
2013
,
Surrogate-Based Modeling and Optimization
,
Springer
,
New York
.
23.
Shi
,
L.
, and
Lin
,
S.-P.
,
2016
, “
A New RBDO Method Using Adaptive Response Surface and First-Order Score Function for Crashworthiness Design
,”
Reliab. Eng. Syst. Saf.
,
156
, pp.
125
133
.
24.
Hamza
,
K.
, and
Saitou
,
K.
,
2012
, “
A Co-Evolutionary Approach for Design Optimization Via Ensembles of Surrogates With Application to Vehicle Crashworthiness
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011001
.
25.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
26.
Cressie
,
N.
,
2015
,
Statistics for Spatial Data
,
John Wiley & Sons
,
New York
.
27.
Gramacy
,
R. B.
, and
Lee
,
H. K.
,
2012
, “
Cases for the Nugget in Modeling Computer Experiments
,”
Stat. Comput.
,
22
(
3
), pp.
713
722
.
28.
Paz
,
J.
,
Díaz
,
J.
, and
Romera
,
L.
,
2020
, “
Analytical and Numerical Crashworthiness Uncertainty Quantification of Metallic Thin-Walled Energy Absorbers
,”
Thin-Walled Struct.
,
157
, p.
107022
.
29.
Qiu
,
N.
,
Gao
,
Y.
,
Fang
,
J.
,
Sun
,
G.
,
Li
,
Q.
, and
Kim
,
N. H.
,
2018
, “
Crashworthiness Optimization With Uncertainty From Surrogate Model and Numerical Error
,”
Thin-Walled Struct.
,
129
, pp.
457
472
.
30.
Bae
,
H.
,
Clark
,
D. L.
, and
Forster
,
E. E.
,
2019
, “
Nondeterministic Kriging for Engineering Design Exploration
,”
AIAA J.
,
57
(
4
), pp.
1659
1670
.
31.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Oper. Res.
,
58
(
2
), pp.
371
382
.
32.
Picheny
,
V.
,
Wagner
,
T.
, and
Ginsbourger
,
D.
,
2013
, “
A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
607
626
.
33.
Picheny
,
V.
, and
Ginsbourger
,
D.
,
2014
, “
Noisy Kriging-Based Optimization Methods: A Unified Implementation Within the Diceoptim Package
,”
Comput. Stat. Data Anal.
,
71
, pp.
1035
1053
.
34.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.
35.
Clark
,
D. L.
,
Bae
,
H.
,
Deaton
,
J. D.
, and
Forster
,
E. E.
,
2019
, “
Adaptive Infill Criteria for Non-Deterministic Kriging Considering Aleatory and Epistemic Uncertainties
,”
AIAA Scitech Forum
,
San Diego, CA
,
Jan. 7–11
.
36.
Takata Corporation
,
2017
,
Advanced Adaptive Restraint Systems (Report No. DOT HS 812 432), National Highway Traffic Safety Administration, Washington, DC
.
37.
Mohan
,
P.
,
Park
,
C.-K.
,
Marzougui
,
D.
,
Kan
,
C.-D.
,
Guha
,
S.
,
Maurath
,
C.
, and
Bhalsod
,
D.
,
2010
, “
LSTC/NCAC Dummy Model Development
,”
11th International LS-DYNA Users Conference
,
June
,
Dearborn, MI
.
38.
Carraro
,
F.
,
Lopez
,
R. H.
,
Miguel
,
L. F. F.
, and
Torii
,
A. J.
,
2019
, “
Monte Carlo Integration With Adaptive Variance Selection for Improved Stochastic Efficient Global Optimization
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
245
268
.
39.
Forrester
,
A. I.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Chichester: John Wiley & Sons
,
UK
.
40.
Dixon
,
L.
, and
Szegö
,
G.
,
1978
,
Towards Global Optimisation 2
,
North-Holland Publishing Company
,
Amsterdam
.
You do not currently have access to this content.