Abstract

Electron beam lithography (EBL) is an important lithographic process of scanning a focused electron beam (e-beam) to direct write a custom pattern with nanometric accuracy. Due to the very limited field of the focused e-beam, a motion stage is needed to move the sample to the e-beam field for processing large patterns. In order to eliminate the stitching error caused by the existing “step and scan” process, we in this paper propose a large range compliant nano-manipulator so that the manipulator and the e-beam can be moved in a simultaneous manner. We also propose an optimized design of the geometric parameters of the compliant nano-manipulator, so that the dimensions and rotational stiffness are suitable for EBL applications in a vacuum environment. Experimental results demonstrate 1 mm × 1 mm travel range with high linearity, ∼0.5% cross-axis error and 5 nm resolution. Moreover, the high natural frequency (∼56 Hz) of the manipulator facilitates it to achieve high-precision motion of EBL.

References

1.
Cabrini
,
S.
, and
Kawata
,
S.
,
2012
,
Nanofabrication Handbook
,
CRC Press
,
Boca Raton, FL
.
2.
Moolman
,
M. C.
,
Huang
,
Z.
,
Krishnan
,
S. T.
,
Kerssemakers
,
J. W.
, and
Dekker
,
N. H.
,
2013
, “
Electron Beam Fabrication of a Microfluidic Device for Studying Submicron-Scale Bacteria
,”
J. Nanobiotechnol.
,
11
(
1
), pp.
1
10
.
3.
Doll
,
P.
,
Al-Ahmad
,
A.
,
Bacher
,
A.
,
Muslija
,
A.
,
Thelen
,
R.
,
Hahn
,
L.
,
Ahrens
,
R.
,
Spindler
,
B.
, and
Guber
,
A.
,
2019
, “
Fabrication of Silicon Nanopillar Arrays by Electron Beam Lithography and Reactive Ion Etching for Advanced Bacterial Adhesion Studies
,”
Mater. Res. Express.
,
6
(
6
), p.
065402
.
4.
Kato
,
K.
,
Liu
,
Y.
,
Murakami
,
S.
,
Morita
,
Y.
, and
Mori
,
T.
,
2021
, “
Electron Beam Lithography With Negative Tone Resist for Highly Integrated Silicon Quantum Bits
,”
Nanotechnology
,
32
(
48
), p.
485301
.
5.
Randall
,
J. N.
,
Owen
,
J. H.
,
Lake
,
J.
, and
Fuchs
,
E.
,
2019
, “
Next Generation of Extreme-Resolution Electron Beam Lithography
,”
J. Vac. Sci. Technol. B, Nanotechnol. Microelectronics: Mater., Process., Meas., Phenom.
,
37
(
6
), p.
061605
.
6.
Kumar
,
R.
,
Chauhan
,
M.
,
Moinuddin
,
M. G.
,
Sharma
,
S. K.
, and
Gonsalves
,
K. E.
,
2020
, “
Development of Nickel-Based Negative Tone Metal Oxide Cluster Resists for Sub-10 Nm Electron Beam and Helium Ion Beam Lithography
,”
ACS. Appl. Mater. Interfaces.
,
12
(
17
), pp.
19616
19624
.
7.
Nabity
,
J.
,
Compbell
,
L. A.
,
Zhu
,
M.
, and
Zhou
,
W.
,
2006
,
Scanning Microscopy for Nanotechnology
,
Springer
,
New York
, pp.
120
151
.
8.
Negrete
,
O. D.
, and
Cerrina
,
F.
,
2008
, “
Step-and-Scan Maskless Lithography for Ultra Large Scale DNA Chips
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
834
837
.  
9.
Buckley
,
J. D.
,
Galburt
,
D. N.
, and
Karatzas
,
C.
,
1989
, “
Step-and-Scan Lithography Using Reduction Optics
,”
J. Vac. Sci. Technol. B: Microelectron. Process. Phenom.
,
7
(
6
), pp.
1607
1612
.
10.
Zhang
,
Z.
,
Yang
,
X.
, and
Yan
,
P.
,
2019
, “
Large Dynamic Range Tracking of An XY Compliant Nanomanipulator with Cross-Axis Coupling Reduction
,”
Mech. Syst. Signal. Process.
,
117
, pp.
757
770
.
11.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.
12.
Al-Jodah
,
A.
,
Shirinzadeh
,
B.
,
Ghafarian
,
M.
, and
Das
,
T. K.
,
2020
, “
Development and Control of a Large Range XY θ Micropositioning Stage
,”
Mechatronics
,
66
(
5
), p.
102343
.
13.
Lu
,
S.
,
Tian
,
C.
, and
Yan
,
P.
,
2019
, “
Adaptive Extended State Observer-Based Synergetic Control for a Long-Stroke Compliant Microstage With Stress Stiffening
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
259
270
.
14.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
,
Zeng
,
M.
, and
Li
,
Q.
,
2019
, “
Optimal Design of a Piezo-actuated 2-DOF Millimeter-Range Monolithic Flexure Mechanism With a Pseudo-Static Model
,”
Mech. Syst. Signal. Process.
,
115
, pp.
120
131
.
15.
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2017
, “
An Ultrathin Monolithic XY Nanopositioning Stage Constructed From a Single Sheet of Piezoelectric Material
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2611
2618
.
16.
Xu
,
Q.
,
2013
, “
Design and Development of a Compact Flexure-Based XY Precision Positioning System With Centimeter Range
,”
IEEE. Trans. Ind. Electron.
,
61
(
2
), pp.
893
903
.
17.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
.” pp.
625
639
.
18.
Dong
,
W.
,
Chen
,
F.
,
Gao
,
F.
,
Yang
,
M.
,
Sun
,
L.
,
Du
,
Z.
,
Tang
,
J.
, and
Zhang
,
D.
,
2018
, “
Development and Analysis of a Bridge-Lever-Type Displacement Amplifier Based on Hybrid Flexure Hinges
,”
Precis. Eng.
,
54
, pp.
171
181
.
19.
Chen
,
F.
,
Gao
,
Y.
,
Dong
,
W.
, and
Du
,
Z.
,
2020
, “
Design and Control of a Passive Compliant Piezo-Actuated Micro-Gripper With Hybrid Flexure Hinges
,”
IEEE. Trans. Ind. Electron.
,
68
(
11
), pp.
11168
11177
.
20.
She
,
Y.
,
Meng
,
D.
,
Su
,
H.-J.
,
Song
,
S.
, and
Wang
,
J.
,
2018
, “
Introducing Mass Parameters to Pseudo-Rigid-Body Models for Precisely Predicting Dynamics of Compliant Mechanisms
,”
Mech. Mach. Theory
,
126
(
2
), pp.
273
294
.
21.
Turkkan
,
O. A.
,
Venkiteswaran
,
V. K.
, and
Su
,
H. -J.
,
2018
, “
Rapid Conceptual Design and Analysis of Spatial Flexure Mechanisms
,”
Mech. Mach. Theory
,
121
, pp.
650
668
.
22.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components with Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
.
23.
Choi
,
M.-J.
, and
Cho
,
S.
,
2020
, “
Isogeometric Optimal Design of Compliant Mechanisms Using Finite Deformation Curved Beam Built-Up Structures
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081402
.
24.
Bilancia
,
P.
,
Smith
,
S. P.
,
Berselli
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Zero Torque Compliant Mechanisms Employing Pre-Buckled Beams
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113301
.
25.
Vedant
,
V.
, and
Allison
,
J. T.
,
2020
, “
Pseudo-Rigid-Body Dynamic Models for Design of Compliant Members
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031116
.
26.
Kumar
,
P.
,
Saxena
,
A.
, and
Sauer
,
R. A.
,
2019
, “
Computational Synthesis of Large Deformation Compliant Mechanisms Undergoing Self and Mutual Contact
,”
ASME J. Mech. Des.
,
141
(
1
), p.
012302
.
27.
Jiang
,
Y.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Design, Development, and Application of a Compact Flexure-Based Decoupler With High Motion Transmission Efficiency and Excellent Input Decoupling Performance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
1071
1081
.
28.
Yu
,
J.
,
Xie
,
Y.
,
Li
,
Z.
, and
Hao
,
G.
,
2015
, “
Design and Experimental Testing of An Improved Large-Range Decoupled XY Compliant Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044503
.
29.
Cui
,
M.
,
Zhang
,
Z.
, and
Yan
,
P.
,
2019
, “
Tracking Control of a Large Range 3D Printed Compliant Nano-Manipulator With Enhanced Anti-Windup Compensation
,”
Mech. Syst. Signal. Process.
,
131
, pp.
33
48
.
30.
Liu
,
Y.
, and
Zhang
,
Z.
,
2021
, “
A Large Range Compliant Xy Nano-Manipulator With Active Parasitic Rotation Rejection
,”
Precis. Eng.
,
72
, pp.
640
652
.
31.
Vieu
,
C.
,
Carcenac
,
F.
,
Pepin
,
A.
,
Chen
,
Y.
,
Mejias
,
M.
,
Lebib
,
A.
,
Manin-Ferlazzo
,
L.
,
Couraud
,
L.
, and
Launois
,
H.
,
2000
, “
Electron Beam Lithography: Resolution Limits and Applications
,”
Appl. Surf. Sci.
,
164
(
1–4
), pp.
111
117
.
32.
Shang
,
J.
,
Tian
,
Y.
,
Li
,
Z.
,
Wang
,
F.
, and
Cai
,
K.
,
2015
, “
A Novel Voice Coil Motor-Driven Compliant Micropositioning Stage Based on Flexure Mechanism
,”
Rev. Sci. Instrum.
,
86
(
9
), p.
095001
.
33.
Herpe
,
X.
,
Dunnigan
,
M.
, and
Kong
,
X.
,
2017
, “
Design, Fabrication and Testing of a Dual-Range XY Micro-Motion Stage Driven by Voice Coil Actuators
,”
Adv. Sci., Technol. Eng. Syst. J.
,
2
(
3
), pp.
498
504
.
34.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2002
, “
Kinematic Analysis of a Translational 3-DOF Micro-Parallel Mechanism Using the Matrix Method
,”
Adv. Robot.
,
16
(
3
), pp.
251
264
.
35.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061009
.
36.
Jiang
,
Y.
,
Li
,
T.-M.
, and
Wang
,
L.-P.
,
2015
, “
Stiffness Modeling of Compliant Parallel Mechanisms and Applications in the Performance Analysis of a Decoupled Parallel Compliant Stage
,”
Rev. Sci. Instrum.
,
86
(
9
), p.
095109
.
37.
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2020
,
Roark’s Formulas for Stress and Strain
,
McGraw-Hill Education
,
New York
.
38.
Tian
,
Y.
,
Ma
,
Y.
,
Wang
,
F.
,
Lu
,
K.
, and
Zhang
,
D.
,
2020
, “
A Novel XYZ Micro/Nano Positioner With An Amplifier Based on L-shape Levers and Half-Bridge Structure
,”
Sens. Actuators., A.
,
302
, p.
111777
.
39.
Beni
,
G.
, and
Wang
,
J.
,
1993
,
Robots and Biological Systems: Towards a New Bionics?
Springer
,
Berlin/Heidelberg
, pp.
703
712
.
40.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
,
Perth, WA, Australia
, IEEE, pp.
1942
1948
.
41.
Pala
,
N.
, and
Karabiyik
,
M.
,
2016
,
Electron Beam Lithography (EBL)
,
Springer Netherlands
,
Dordrecht
, pp.
1033
1057
.
42.
Roy
,
N. K.
, and
Cullinan
,
M. A.
,
2018
, “
Design and Characterization of a Two-Axis, Flexure-Based Nanopositioning Stage with 50 Mm Travel and Reduced Higher Order Modes
,”
Precis. Eng.
,
53
, pp.
236
247
.
43.
Cai
,
K.
,
Tian
,
Y.
,
Liu
,
X.
,
Zhang
,
D.
,
Shang
,
J.
, and
Shirinzadeh
,
B.
,
2019
, “
Development and Control Methodologies for 2-DOF Micro/Nano Positioning Stage with High Out-of-Plane Payload Capacity
,”
Robot. Comput.-Integrated Manuf.
,
56
, pp.
95
105
.
You do not currently have access to this content.