Abstract

In robotics, the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts. It is able to protect the robot from impulsive forces caused by collisions of the end-effector, but it has no effect on possible collisions between the links and obstacles. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically nonlinear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces. Numerical results are validated by means of specific laboratory tests.

References

1.
Boschetti
,
G.
,
Bottin
,
M.
,
Faccio
,
M.
, and
Minto
,
R.
,
2021
, “
Multi-Robot Multi-Operator Collaborative Assembly Systems: A Performance Evaluation Model
,”
J. Intell. Manuf.
,
32
(
5
), pp.
1455
1470
.
2.
Cipriani
,
G.
,
Bottin
,
M.
, and
Rosati
,
G.
,
2021
, “
Applications of Learning Algorithms to Industrial Robotics
,”
Mech. Mach. Sci.
,
91
, pp.
260
268
.
3.
Bottin
,
M.
,
Boschetti
,
G.
, and
Rosati
,
G.
,
2019
, “
A Novel Collision Avoidance Method for Serial Robots
,”
Mech. Mach. Sci.
,
66
, pp.
293
301
.
4.
Bottin
,
M.
,
Rosati
,
G.
, and
Cipriani
,
G.
,
2021
, “
Iterative Path Planning of a Serial Manipulator in a Cluttered Known Environment
,”
Mech. Mach. Sci.
,
91
, pp.
237
244
.
5.
Reyes-Uquillas
,
D.
, and
Hsiao
,
T.
,
2021
, “
Safe and Intuitive Manual Guidance of a Robot Manipulator Using Adaptive Admittance Control Towards Robot Agility
,”
Rob. Comput. Integr. Manuf.
,
70
, p.
102127
.
6.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
7.
Hokayem
,
P. F.
, and
Spong
,
M. W.
,
2006
, “
Bilateral Teleoperation: An Historical Survey
,”
Automatica
,
42
(
12
), pp.
2035
2057
.
8.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and “Soft-Arm” Tactics [Robot Arm Design]
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
22
33
.
9.
Weitschat
,
R.
,
Vogel
,
J.
,
Lantermann
,
S.
, and
Höppner
,
H.
,
2017
, “
End-Effector Airbags to Accelerate Human-Robot Collaboration
,” pp.
2279
2284
.
10.
Hannaford
,
B.
, and
Anderson
,
R.
,
1988
, “
Experimental and Simulation Studies of Hard Contact
,”
Proceedings of 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, IEEE, pp.
584
589
.
11.
Ham
,
R. V.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Robot. Autom. Mag.
,
3
(
16
), pp.
81
94
.
12.
Jujjavarapu
,
S. S.
,
Memar
,
A. H.
,
Karami
,
M. A.
, and
Esfahani
,
E. T.
,
2019
, “
Variable Stiffness Mechanism for Suppressing Unintended Forces in Physical Human–Robot Interaction
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020915
.
13.
Bottin
,
M.
,
Cocuzza
,
S.
,
Comand
,
N.
, and
Doria
,
A.
,
2020
, “
Modeling and Identification of an Industrial Robot With a Selective Modal Approach
,”
Appl. Sci.
,
10
(
13
), p.
4619
.
14.
Huynh
,
H. N.
,
Assadi
,
H.
,
Riviere-Lorphevre
,
E.
,
Ver- linden
,
O.
, and
Ahmadi
,
K.
,
2020
, “
Modelling the Dynamics of Industrial Robots for Milling Operations
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101852
.
15.
Tommasino
,
D.
,
Cipriani
,
G.
,
Doria
,
A.
, and
Rosati
,
G.
,
2020
, “
Effect of End-Effector Compliance on Collisions in Robotic Teleoperation
,”
Appl. Sci.
,
10
(
24
), p.
9077
.
16.
Hwang
,
I.-H.
,
Shim
,
Y.-S.
, and
Lee
,
J.-H.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
.
17.
Zirbel
,
S. A.
,
Tolman
,
K. A.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2016
, “
Bistable Mechanisms for Space Applications
,”
PLoS One
,
11
(
12
), pp.
1
18
.
18.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
19.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
20.
Hu
,
S.
, and
Guo
,
X.
,
2015
, “
A Dissipative Contact Force Model for Impact Analysis in Multibody Dynamics
,”
Multibody Sys. Dyn.
,
35
(
2
), pp.
131
151
.
21.
Brach
,
R. M.
,
2007
,
Mechanical Impact Dynamics: Rigid Body Collisions
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.