Abstract

Engineering systems design is a dynamic socio-technical process where the social factors, such as interdisciplinary interactions, and technical factors, such as design interdependence and the design state, co-evolve. Understanding this co-evolution can lead to behavioral insights, resulting in efficient communication pathways and better designs. In that context, we investigate how to generate behavioral insights to inform effective structuring of interdisciplinary interactions in engineering systems design teams. We present an approach that combines the predictive capabilities of computational modeling with contextual information from empirical data. A stochastic network-behavior dynamics model quantifies the co-evolution of design interdependence, discipline-specific interaction decisions, and the changes in system performance. We employ two datasets, one of the student subjects designing an automotive engine and NASA engineers designing a spacecraft. Then, we apply Bayesian statistical inference to estimate model parameters and compare insights across the two datasets. The results indicate that design interdependence and social network factors such as reciprocity and popularity have strong positive effects on interdisciplinary interactions for the expert and student subjects alike. An additional modulating impact of system performance on the number of interactions is observed for the student subjects. Inversely, the total number of interactions, irrespective of their discipline-wise distribution, has a weak but statistically significant positive effect on system performance in both cases. However, we observe that excessive interactions mirrored with design interdependence and inflexibility in design exploration reduced the system performance. These insights support the case for open boundaries in systems design teams to improve system performance.

References

1.
Vroom
,
V. H.
, and
Jago
,
A. G.
,
1974
, “
Decision Making as a Social Process: Normative and Descriptive Models of Leader Behavior
,”
Decision Sci.
,
5
(
4
), pp.
743
769
.
2.
Bucciarelli
,
L. L.
,
1994
,
Designing Engineers
,
MIT Press
,
Cambridge, MA
.
3.
Kvan
,
T.
,
2000
, “
Collaborative Design: What Is It?
Autom. Constr.
,
9
(
4
), pp.
409
415
.
4.
Sosa
,
M. E.
,
Eppinger
,
S. D.
,
Pich
,
M.
,
McKendrick
,
D. G.
, and
Stout
,
S. K.
,
2002
, “
Factors That Influence Technical Communication in Distributed Product Development: An Empirical Study in the Telecommunications Industry
,”
IEEE Trans. Eng. Manage.
,
49
(
1
), pp.
45
58
.
5.
Eppinger
,
S. D.
,
2002
, “
Patterns of Product Development Interactions
,” MIT Engineering Systems Division Working Papers, ESD-WP-2003-01.05.
6.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2004
, “
The Misalignment of Product Architecture and Organizational Structure in Complex Product Development
,”
Manage. Sci.
,
50
(
12
), pp.
1674
1689
.
7.
Colfer
,
L. J.
, and
Baldwin
,
C. Y.
,
2016
, “
The Mirroring Hypothesis: Theory, Evidence, and Exceptions
,”
Ind. Corp. Change
,
25
(
5
), pp.
709
738
.
8.
Dong
,
A.
,
Hill
,
A. W.
, and
Agogino
,
A. M.
,
2004
, “
A Document Analysis Method for Characterizing Design Team Performance
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
378
385
.
9.
Tenopir
,
C.
, and
King
,
D. W.
,
2004
,
Communication Patterns of Engineers
,
John Wiley & Sons
,
Hoboken, NJ
.
10.
Wu
,
D.
,
Rosen
,
D. W.
,
Panchal
,
J. H.
, and
Schaefer
,
D.
,
2016
, “
Understanding Communication and Collaboration in Social Product Development Through Social Network Analysis
,”
J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011001
.
11.
Snider
,
C.
,
Škec
,
S.
,
Gopsill
,
J.
, and
Hicks
,
B.
,
2017
, “
The Characterisation of Engineering Activity Through Email Communication and Content Dynamics, for Support of Engineering Project Management
,”
Design Sci.
,
3
, p.
E22
.
12.
Sosa
,
M. E.
,
2011
, “
Where Do Creative Interactions Come From? The Role of Tie Content and Social Networks
,”
Organ. Sci.
,
22
(
1
), pp.
1
21
.
13.
Forsythe
,
C.
,
Joseph
,
N.
,
Szajnfarber
,
Z.
,
Gralla
,
E.
,
Adams
,
S.
,
Beling
,
P. A.
,
Lambert
,
J. H.
,
Scherer
,
W. T.
, and
Fleming
,
C. H.
,
2019
,
Systems Engineering in Context
,
Springer International Publishing
,
Cham
, pp.
449
461
.
14.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2003
, “
Identifying Modular and Integrative Systems and Their Impact on Design Team Interactions
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
240
252
.
15.
Ostergaard
,
K. J.
,
Wetmore
,
W. R., III
,
Divekar
,
A.
,
Vitali
,
H.
, and
Summers
,
J. D.
,
2005
, “
An Experimental Methodology for Investigating Communication in Collaborative Design Review Meetings
,”
Co-Design
,
1
(
3
), pp.
169
185
.
16.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2015
, “
Lifting the Veil: Drawing Insights About Design Teams From a Cognitively-Inspired Computational Model
,”
Design Stud.
,
40
, pp.
119
142
.
17.
Piccolo
,
S. A.
,
Maier
,
A. M.
,
Lehmann
,
S.
, and
McMahon
,
C. A.
,
2019
, “
Iterations as the Result of Social and Technical Factors: Empirical Evidence From a Large-Scale Design Project
,”
Res. Eng. Des.
,
30
(
2
), pp.
251
270
.
18.
Ball
,
Z.
, and
Lewis
,
K.
,
2018
, “
Observing Network Characteristics in Mass Collaboration Design Projects
,”
Design Sci.
,
4
, p.
e4
.
19.
Piccolo
,
S. A.
,
Lehmann
,
S.
, and
Maier
,
A.
,
2018
, “
Design Process Robustness: A Bipartite Network Analysis Reveals the Central Importance of People
,”
Design Sci.
,
4
, p.
e1
.
20.
Meluso
,
J.
, and
Austin-Breneman
,
J.
,
2018
, “
Gaming the System: An Agent-Based Model of Estimation Strategies and Their Effects on System Performance
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121101
.
21.
Meluso
,
J.
,
Austin-Breneman
,
J.
, and
Shaw
,
L.
,
2019
, “
An Agent-Based Model of Miscommunication in Complex System Engineering Organizations
,”
IEEE Syst. J.
,
14
(
3
), pp.
3463
3474
.
22.
Snijders
,
T. A.
,
2005
, “Models for Longitudinal Network Data,”
Models and Methods in Social Network Analysis
, Vol.
1
,
P.
Carrington
,
J.
Scott
, and
S.
Wasserman
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
215
247
.
23.
Snijders
,
T. A.
,
Steglich
,
C. E.
, and
Schweinberger
,
M.
,
2007
, “
Modeling the Co-Evolution of Networks and Behavior
,”
Longitudinal Models Behav. Relat. Sci.
,
31
(
4
), pp.
41
71
.
24.
Van den Bulte
,
C.
, and
Moenaert
,
R. K.
,
1998
, “
The Effects of R&D Team Co-Location on Communication Patterns Among R&D, Marketing, and Manufacturing
,”
Management Sci.
,
44
(
11-Part-2
), pp.
S1
S18
.
25.
Wasserman
,
S. S.
,
1980
, “
A Stochastic Model for Directed Graphs With Transition Rates Determined by Reciprocity
,”
Sociol. Methodol.
,
11
, pp.
392
412
.
26.
Leenders
,
R. T. A.
,
1995
, “
Models for Network Dynamics: A Markovian Framework
,”
J. Math. Sociol.
,
20
(
1
), pp.
1
21
.
27.
Wasserman
,
S.
,
1980
, “
Analyzing Social Networks as Stochastic Processes
,”
J. Am. Stat. Assoc.
,
75
(
370
), pp.
280
294
.
28.
Chapman
,
W. L.
,
Rozenblit
,
J.
, and
Bahill
,
A. T.
,
2001
, “
System Design Is an Np-Complete Problem
,”
Syst. Eng.
,
4
(
3
), pp.
222
229
.
29.
MacCormack
,
A.
,
Baldwin
,
C.
, and
Rusnak
,
J.
,
2012
, “
Exploring the Duality Between Product and Organizational Architectures: A Test of the ‘Mirroring’ Hypothesis
,”
Res. Policy
,
41
(
8
), pp.
1309
1324
.
30.
Eppinger
,
S. D.
,
2001
, “
Innovation at the Speed of Information
,”
Harvard Bus. Rev.
,
79
(
1
), pp.
149
158
.
31.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
32.
Szajnfarber
,
Z.
, and
Gralla
,
E.
,
2017
, “
A Framework for Measuring the ‘Fit’ Between Product and Organizational Architectures
,”
Disciplinary Convergence in Systems Engineering Research
,
Springer
,
Redondo Beach, CA
, pp.
483
499
.
33.
Perišić
,
M. M.
,
Štorga
,
M.
, and
Gero
,
J. S.
,
2018
, “
Exploring the Effect of Experience on Team Behavior: A Computational Approach
,”
International Conference On-Design Computing and Cognition
,
Politecnico di Milano
,
Italy
, pp.
595
612
.
34.
Chaudhari
,
A. M.
,
Gralla
,
E. L.
,
Szajnfarber
,
Z.
,
Grogan
,
P. T.
, and
Panchal
,
J. H.
,
2020
, “
Designing Representative Model Worlds to Study Socio-Technical Phenomena: A Case Study of Communication Patterns in Engineering Systems Design
,”
ASME J. Mech. Des.
,
142
(
12
), p.
121403
.
35.
Szajnfarber
,
Z.
,
Grogan
,
P. T.
,
Panchal
,
J. H.
, and
Gralla
,
E. L.
,
2020
, “
A Call for Consensus on the Use of Representative Model Worlds in Systems Engineering and Design
,”
Syst. Eng.
,
23
(
4
), pp.
436
442
.
36.
McGowan
,
A.-M. R.
,
Daly
,
S.
,
Baker
,
W.
,
Papalambros
,
P.
, and
Seifert
,
C.
,
2013
, “
A Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems
,”
Procedia Comput. Sci.
,
16
, pp.
1142
1151
.
37.
Ethiraj
,
S. K.
, and
Levinthal
,
D.
,
2004
, “
Modularity and Innovation in Complex Systems
,”
Manage. Sci.
,
50
(
2
), pp.
159
173
.
38.
Vrolijk
,
A.
, and
Szajnfarber
,
Z.
,
2015
, “
When Policy Structures Technology: Balancing Upfront Decomposition and In-Process Coordination in Europe’s Decentralized Space Technology Ecosystem
,”
Acta Astronautica
,
106
, pp.
33
46
.
39.
Safarkhani
,
S.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2018
, “
Understanding the Effect of Task Complexity and Problem-Solving Skills on the Design Performance of Agents in Systems Engineering
,”
2A: 44th Design Automation Conference
,
Aug. 26–29
,
Quebec City, Canada
, p.
V02AT03A060
.
40.
Vermillion
,
S. D.
, and
Malak
,
R. J.
,
2015
, “
Using a Principal-Agent Model to Investigate Delegation in Systems Engineering
,”
35th Computers and Information in Engineering Conference
,
Aug. 2–5
,
Boston, MA
, p.
V01BT02A046
.
41.
McGowan
,
A.-M. R.
,
Seifert
,
C. M.
, and
Papalambros
,
P. Y.
,
2012
, “
Organizational Influences on Interdisciplinary Interactions During Research and Design of Large-Scale Complex Engineered Systems
,”
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference
,
Indianapolis, IN
,
Sept. 17–19
,
Paper No. 5574
.
You do not currently have access to this content.