Abstract

Reliability-based mission planning of off-road autonomous ground vehicles (AGVs) aims to identify an optimal path under uncertain and deformable terrain environment, while satisfying specific mission mobility reliability (MMR) constraints. The repeated evaluation of MMR during path planning poses computational challenges for practical applications. This paper presents an efficient reliability-based mission planning using an outcrossing approach that has a similar computational complexity compared to deterministic mission planning. A Gaussian random field is employed to represent the spatially dependent uncertainty sources in the terrain environment. The latter are then used in conjunction with a vehicle mobility model to generate a stochastic mobility map. Based on the stochastic mobility map, outcrossing rate maps are generated using the outcrossing concept which is widely used in time-dependent reliability. Integration of the outcrossing rate map with a rapidly exploring random tree (RRT*) algorithm allows for efficient path planning of AGVs subject to MMR constraints. A reliable RRT* algorithm using the outcrossing approach (RRT*-OC) is developed to implement the proposed efficient reliability-based mission planning. Results of a case study with two scenarios verify the accuracy and efficiency of the proposed algorithm.

References

1.
Hu
,
Z.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Majcher
,
M.
,
2020
, “
Testing Design Optimization for Uncertainty Reduction in Generating Off-Road Mobility Map Using a Bayesian Approach
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021402
.
2.
Liu
,
Y.
,
Jiang
,
C.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
,
Fu
,
Y.
,
Majcher
,
M.
, and
Hu
,
Z.
,
2021
, “
Simulation-Based Mission Mobility Reliability Analysis of Off-Road Ground Vehicles
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031701
.
3.
Next-Generation NATO Reference Mobility Model Development Introduction
,” https://www.youtube.com/watch?v=JxZAMUZE37k
4.
Jiang
,
C.
,
Hu
,
Z.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
,
Fu
,
Y.
, and
Majcher
,
M.
,
2021
, “
R2-RRT*: Reliability-Based Robust Mission Planning of Off-Road Autonomous Ground Vehicle Under Uncertain Terrain Environment
,” IEEE Trans. Autom. Sci. Eng., pp.
1
17
.
5.
Petrick
,
E.
,
Janosi
,
Z.
, and
Haley
,
P.
,
1981
, “The Use of the NATO reference mobility model in military vehicle procurement,” SAE Technical Paper No. 0148-7191.
6.
Laughery
,
S.
,
Gerhart
,
G.
, and
Goetz
,
R.
,
1990
, “Bekker's Terramechanics Model for Off-Road Vehicle Research,” Tacom Research Development and Engineering Center, Warren, MI.
7.
Bradbury
,
M.
,
Dasch
,
J.
,
Gonzalez
,
R.
,
Hodges
,
H.
,
Jain
,
A.
,
Iagnemma
,
K.
,
Letherwood
,
M.
, et al
,
2016
, “Next-Generation NATO Reference Mobility Model (NG-NRMM),” Tank Automotive Research, Development and Engineering Center (TARDEC), Warren, MI.
8.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation Nato Reference Mobility Model Development
,”
J. Terramechanics
,
73
(
1
), pp.
49
60
.
9.
Gonzalez
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Generation of Stochastic Mobility Maps for Large-Scale Route Planning of Ground Vehicles: A Case Study
,”
J. Terramechanics
,
69
(
1
), pp.
1
11
.
10.
González
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Stochastic Mobility Prediction of Ground Vehicles Over Large Spatial Regions: A Geostatistical Approach
,”
Auton. Robots
,
41
(
2
), pp.
311
331
.
11.
Hetherington
,
J.
,
2001
, “
The Applicability of the MMP Concept in Specifying off-Road Mobility for Wheeled and Tracked Vehicles
,”
J. Terramechanics
,
38
(
2
), pp.
63
70
.
12.
Jones
,
R. A.
,
Price
,
S. J.
, and
Ahlvin
,
R. B.
,
2004
, “Mission Level Mobility Analysis of the US Marine Corps HIMARS Vehicles,” U.S. Army Engineer Research and Development Center, Geotechnical And Structures Lab, Vicksburg, MS.
13.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramechanics
,
72
(
1
), pp.
39
54
.
14.
Choi
,
K. K.
,
Jayakumar
,
P.
,
Funk
,
M.
,
Gaul
,
N.
, and
Wasfy
,
T. M.
,
2019
, “
Framework of Reliability-Based Stochastic Mobility Map for Next Generation NATO Reference Mobility Model
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021012
.
15.
Kuffner
,
J. J.
, and
LaValle
,
S. M.
,
2020
, “
RRT-Connect An Efficient Approach to Single-Query Path Planning
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics & Automation
,
San Francisco, CA
,
Apr. 24–28
, pp.
995
1001
.
16.
Melchior
,
N. A.
, and
Simmons
,
R.
,
2007
, “
Particle RRT for Path Planning With Uncertainty
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, IEEE, pp.
1617
1624
.
17.
Achtelik
,
M. W.
,
Weiss
,
S.
,
Chli
,
M.
, and
Siegwart
,
R.
,
2013
, “
Path Planning for Motion Dependent State Estimation on Micro Aerial Vehicles
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
3926
3932
.
18.
Pilania
,
V.
, and
Gupta
,
K.
,
2018
, “
Mobile Manipulator Planning Under Uncertainty in Unknown Environments
,”
Int. J. Robot. Res.
,
37
(
2–3
), pp.
316
339
.
19.
Sun
,
W.
,
van den Berg
,
J.
, and
Alterovitz
,
R.
,
2016
, “
Stochastic Extended LQR for Optimization-Based Motion Planning Under Uncertainty
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
437
447
.
20.
Van Den Berg
,
J.
,
Abbeel
,
P.
, and
Goldberg
,
K.
,
2011
, “
LQG-MP: Optimized Path Planning for Robots With Motion Uncertainty and Imperfect State Information
,”
Int. J. Robot. Res.
,
30
(
7
), pp.
895
913
.
21.
Van Den Berg
,
J.
,
Patil
,
S.
, and
Alterovitz
,
R.
,
2012
, “
Motion Planning Under Uncertainty Using Iterative Local Optimization in Belief Space
,”
Int. J. Robot. Res.
,
31
(
11
), pp.
1263
1278
.
22.
Zhang
,
B.
,
Tang
,
L.
, and
Roemer
,
M.
,
2018
, “
Probabilistic Planning and Risk Evaluation Based on Ensemble Weather Forecasting
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
556
566
.
23.
Elbanhawi
,
M.
, and
Simic
,
M.
,
2014
, “
Sampling-Based Robot Motion Planning: A Review
,”
IEEE Access
,
2
(
1
), pp.
56
77
.
24.
Zhang
,
B.
,
Tang
,
L.
,
DeCastro
,
J.
,
Roemer
,
M. J.
, and
Goebel
,
K.
,
2014
, “
A Recursive Receding Horizon Planning for Unmanned Vehicles
,”
IEEE Trans. Ind. Electron.
,
62
(
5
), pp.
2912
2920
.
25.
Koenig
,
S.
, and
Likhachev
,
M.
,
2005
, “
Fast Replanning for Navigation in Unknown Terrain
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
354
363
.
26.
Sun
,
W.
,
Patil
,
S.
, and
Alterovitz
,
R.
,
2015
, “
High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
,”
IEEE Trans. Robot.
,
31
(
1
), pp.
104
116
.
27.
Raja
,
R.
,
Dutta
,
A.
, and
Venkatesh
,
K. S.
,
2015
, “
New Potential Field Method for Rough Terrain Path Planning Using Genetic Algorithm for a 6-Wheel Rover
,”
Rob. Auton. Syst.
,
72
(
1
), pp.
295
306
.
28.
Howard
,
T. M.
, and
Kelly
,
A.
,
2016
, “
Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
,”
Int. J. Robot. Res.
,
26
(
2
), pp.
141
166
.
29.
Bonnafous
,
D.
,
Lacroix
,
S.
, and
Siméon
,
T.
,
2001
, “
Motion Generation for a Rover on Rough Terrains
,”
Proc. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180)
,
Maui, HI
,
Oct. 29–Nov. 3
, IEEE, pp.
784
789
.
30.
Vernaza
,
P.
,
Likhachev
,
M.
,
Bhattacharya
,
S.
,
Chitta
,
S.
,
Kushleyev
,
A.
, and
Lee
,
D. D.
,
2009
, “
Search-Based Planning for a Legged Robot Over Rough Terrain
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
2380
2387
.
31.
Quann
,
M.
,
Ojeda
,
L.
,
Smith
,
W.
,
Rizzo
,
D.
,
Castanier
,
M.
, and
Barton
,
K.
,
2020
, “
Off-Road Ground Robot Path Energy Cost Prediction Through Probabilistic Spatial Mapping
,”
J. Field Robot.
,
37
(
3
), pp.
421
439
.
32.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
33.
Jiang
,
C.
,
Qiu
,
H.
,
Gao
,
L.
,
Wang
,
D.
,
Yang
,
Z.
, and
Chen
,
L.
,
2020
, “
Real-Time Estimation Error-Guided Active Learning Kriging Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Model.
,
77
(
1
), pp.
82
98
.
34.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
35.
Huang
,
S.
,
Mahadevan
,
S.
, and
Rebba
,
R.
,
2007
, “
Collocation-Based Stochastic Finite Element Analysis for Random Field Problems
,”
Probabilistic Eng. Mech.
,
22
(
2
), pp.
194
205
.
36.
Jiang
,
C.
,
Wei
,
X.
,
Huang
,
Z.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
.
37.
Chen
,
J.-B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.
38.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), pp.
071003
071008
.
39.
Jiang
,
C.
,
Huang
,
X.
,
Han
,
X.
, and
Zhang
,
D.
,
2014
, “
A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091009
.
40.
Gong
,
C.
, and
Frangopol
,
D. M.
,
2019
, “An Efficient Time-Dependent Reliability Method,” Structural Safety, 81.
41.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Robot. Res.
,
30
(
7
), pp.
846
894
.
42.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscipl. Optim.
,
48
(
5
), pp.
893
907
.
43.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
47.
Sakai
,
A.
,
Ingram
,
D.
,
Dinius
,
J.
,
Chawla
,
K.
,
Raffin
,
A.
, and
Paques
,
A.
,
2018
, “
PythonRobotics: A Python Code Collection of Robotics Algorithms
,” arXiv preprint arXiv:1808.10703.
48.
Jiang
,
C.
,
Hu
,
Z.
,
Liu
,
Y.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
, and
Jayakumar
,
P.
,
2020
, “
A Sequential Calibration and Validation Framework for Model Uncertainty Quantification and Reduction
,”
Comput. Methods Appl. Mech. Eng.
,
368
(
1
), p.
113172
.
You do not currently have access to this content.