Abstract

Multiobjective design optimization studies typically derive Pareto sets or use a scalar substitute function to capture design trade-offs, leaving it up to the designer’s intuition to use this information for design refinements and decision-making. Understanding the causality of trade-offs more deeply, beyond simple postoptimality parametric studies, would be particularly valuable in configuration design problems to guide configuration redesign. This article presents the method of multiobjective monotonicity analysis to identify root causes for the existence of trade-offs and the particular shape of Pareto sets. This analysis process involves reducing optimization models through constraint activity identification to a point where dependencies specific to the Pareto set and the constraints that cause them are revealed. The insights gained can then be used to target configuration design changes. We demonstrate the proposed approach in the preliminary design of a medical device for oral drug delivery.

References

1.
Arthur
,
W. B.
,
1993
, “
Why Do Things Become More Complex?
,”
Sci. Am.
,
268
(
5
), p.
144
.
2.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering Toyota's Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), pp.
67
83
.
3.
Ahmed
,
S.
,
Wallace
,
K. M.
, and
Blessing
,
L. T.
,
2003
, “
Understanding the Differences Between How Novice and Experienced Designers Approach Design Tasks
,”
Res. Eng. Des.
,
14
(
1
), pp.
1
11
.
4.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.H.
,
2007
,
Engineering Design: A Systematic Approach
, 3rd ed.,
Springer-Verlag London Limited
,
London
, pp.
1
629
.
5.
Papalambros
,
P. Y.
, and
Shea
,
K.
,
2001
, “Creating Structural Configurations,”
Formal Engineering Design Synthesis
,
E. K.
Antonsson
,
J.
Cagan
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
93
125
.
6.
Ullman
,
D. G.
,
Dietterich
,
T. G.
, and
Stauffer
,
L. A.
,
1988
, “
A Model of the Mechanical Design Process Based on Empirical Data
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
2
(
1
), pp.
33
52
.
7.
Suh
,
N. P.
,
1998
, “
Axiomatic Design Theory for Systems
,”
Res. Eng. Des. Theory Appl. Concurr. Eng.
,
10
(
4
), pp.
189
209
.
8.
Sillitto
,
H. G.
,
2009
, “
On Systems Architects and Systems Architecting: Some Thoughts on Explaining and Improving the Art and Science of Systems Architecting
,”
INCOSE International Symposium
,
Singapore
,
July 20–23
.
9.
Andreasen
,
M. M.
, and
Howard
,
T. J.
,
2011
, “Is Engineering Design Disappearing From Design Research?,”
The Future of Design Methodology
,
Birkhofer
,
H.
, ed.,
Springer Verlag
,
London
, pp.
21
34
.
10.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2009
, “
Should Designers Worry About Market Systems?
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011011
.
11.
Purshouse
,
R. C.
, and
Fleming
,
P. J.
,
2003
, “Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-Criterion Optimisation,”
Evolutionary Multi-Criterion Optimization
,
Fonseca
,
C. M.
,
Fleming
,
P. J.
,
Zitzler
,
E.
,
Thiele
,
L.
,
Deb
,
K.
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
16
30
.
12.
Das
,
I.
,
1999
, “
A Preference Ordering Among Various Pareto Optimal Alternatives
,”
Struct. Optim.
,
18
(
8
), pp.
30
35
.
13.
Kelly
,
J. C.
,
Maheut
,
P.
,
Petiot
,
J.-F.
, and
Papalambros
,
P. Y.
,
2011
, “
Incorporating User Shape Preference in Engineering Design Optimisation
,”
J. Eng. Des.
,
22
(
9
), pp.
627
650
.
14.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
15.
Kasprzak
,
E. M.
, and
Lewis
,
K. E.
,
2001
, “
Pareto Analysis in Multiobjective Optimization Using the Collinearity Theorem and Scaling Method
,”
Struct. Multidiscip. Optim.
,
22
(
3
), pp.
208
218
.
16.
Otto
,
K. N.
, and
Antonsson
,
E. K.
,
1991
, “
Trade-Off Strategies in Engineering Design
,”
Res. Eng. Des.
,
3
(
2
), pp.
87
103
.
17.
Gunawan
,
S.
, and
Azarm
,
S.
,
2005
, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
,
29
(
1
), pp.
50
60
.
18.
Mattson
,
C. A.
, and
Messac
,
A.
,
2005
, “
Pareto Frontier Based Concept Selection Under Uncertainty, With Visualization
,”
Technical Report
, pp.
88
115
.
19.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1998
, “
Multiobjective Optimization and Multiple Constraint Handling With Evolutionary Algorithms—Part I: A Unified Formulation
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
,
28
(
1
), pp.
26
37
.
20.
Unal
,
M.
,
Warn
,
G. P.
, and
Simpson
,
T. W.
,
2016
, “
Quantifying Tradeoffs to Reduce the Dimensionality of Complex Design Optimization Problems and Expedite Trade Space Exploration
,”
Struct. Multidiscip. Optim.
,
54
(
2
), pp.
233
248
.
21.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
22.
Unal
,
M.
,
Warn
,
G. P.
, and
Simpson
,
T. W.
,
2018
, “
Quantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021402
.
23.
Das
,
I.
,
1999
, “
On Characterizing the ‘Knee” of the Pareto Curve Based on Normal-Boundary Intersection
,”
Struct. Optim.
,
18
(
10
), pp.
107
115
.
24.
Frischknecht
,
B.
, and
Papalambros
,
P.
,
2008
, “
A Pareto Approach to Aligning Public and Private Objectives in Vehicle Design
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
.
25.
Frischknecht
,
B. D.
,
Peters
,
D. L.
, and
Papalambros
,
P. Y.
,
2011
, “
Pareto Set Analysis: Local Measures of Objective Coupling in Multiobjective Design Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
617
630
.
26.
Wu
,
J.
, and
Azarm
,
S.
,
2001
, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.
27.
Athan
,
T. W.
, and
Papalambros
,
P. Y.
,
1996
, “
A Quasi-Monte Carlo Method for Multicriteria Design Optimization
,”
Eng. Optim.
,
27
(
3
), pp.
177
198
.
28.
Papalambros
,
P.
, and
Wilde
,
D. J.
,
1978
, “
Global Non-Iterative Design Optimization Using Monotonicity Analysis
,”
ASME J. Mech. Des.
,
101
(
4
), pp.
645
649
.
29.
Michelena
,
N. F.
, and
Agogino
,
A. M.
,
1988
, “
Multiobjective Hydraulic Cylinder Design
,”
ASME J. Mech. Transm. Autom. Des.
,
110
(
1
), pp.
81
87
.
30.
Gobbi
,
M.
,
Levi
,
F.
,
Mastinu
,
G.
, and
Previati
,
G.
,
2015
, “
On the Analytical Derivation of the Pareto-Optimal Set With Applications to Structural Design
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
645
657
.
31.
Mastinu
,
G.
,
Gobbi
,
M.
, and
Miano
,
C.
,
2006
,
Optimal Design of Complex Mechanical Systems With Applications to Vehicle Engineering
, 1st ed.,
Springer Verlag
,
Berlin/Heidelberg
, pp.
1
359
.
32.
Jain
,
P.
, and
Agogino
,
A. M.
,
1990
, “
Theory of Design: An Optimization Perspective
,”
Mech. Mach. Theory
,
25
(
3
), pp.
287
303
.
33.
Ishii
,
K.
, and
Barkan
,
P.
,
1987
, “
Active Constraint Deduction—A Framework for Expert Systems in Mechanical Systems Design
,”
ASME 1987 Design Technology Conferences
,
Boston MA
,
Sept. 27–30
.
34.
Cagan
,
J.
, and
Agogino
,
A. M.
,
1987
, “
Innovative Design of Mechanical Structures From First Principles
,”
Art. Intell. Eng. Des. Anal. Manufac.
,
1
(
3
), pp.
169
189
.
35.
Deb
,
K.
, and
Srinivasan
,
A.
,
2006
, “
Innovization: Innovating Design Principles Through Optimization
,”
GECCO 2006 – Genetic and Evolutionary Computation Conference
,
Seattle, WA
,
July 8–12
, Vol. 2, pp.
1629
1636
.
36.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2017
,
Principles of Optimal Design
,
Cambridge University Press
,
Cambridge, UK
.
37.
Carmichael
,
D.
,
1980
, “
Computation of Pareto Optima in Structural Design
,”
Int. J. Numer. Methods Eng.
,
15
(
6
), pp.
925
952
.
38.
Lin
,
J. G.
,
1976
, “
Maximal Vectors and Multi-Objective Optimization
,”
J. Optim. Theory Appl.
,
18
(
1
), pp.
41
64
.
39.
Mavrotas
,
G.
,
2009
, “
Effective Implementation of the ϵ-constraint Method in Multi-Objective Mathematical Programming Problems
,”
Appl. Math. Comput.
,
213
(
2
), pp.
455
465
.
40.
Haimes
,
Y. Y.
, and
Hall
,
W. A.
,
1974
, “
Multiobjectives in Water Resource Systems Analysis: The Surrogate Worth Trade Off Method
,”
Water Resour. Res.
,
10
(
4
), pp.
615
624
.
41.
Papalambros
,
P. Y.
,
1994
, “Model Reduction and Verification Techniques,”
Advances in Design Optimization
,
Adeli
,
H.
, ed.,
Chapman and Hall
,
New York
, pp.
109
138
.
42.
Abramson
,
A.
,
Caffarel-Salvador
,
E.
,
Khang
,
M.
,
Dellal
,
D.
,
Silverstein
,
D.
,
Gao
,
Y.
, and
Frederiksen
,
M. R.
, et al.,
2019
, “
An Ingestible Self-Orienting System for Oral Delivery of Macromolecules
,”
Science
,
363
(
6427
), pp.
611
615
.
43.
U.S. Department of Health and Human Services Food and Drug Administration (CDER)
,
2013
, “
Guidance for Industry: Size, Shape and Other Physical Attributes of Generic Tablets and Capsules
,” Pharmaceutical Quality/CMC, pp.
1
11
.
44.
Mathworks
,
2020
,
Optimization ToolboxTM - Users Guide R2020B
(
Software Documentation)
.
45.
Channer
,
K. S.
, and
Virjee
,
J. P.
,
1986
, “
The Effect of Size and Shape of Tablets on Their Esophageal Transit
,”
J. Clin. Pharmacol.
,
26
(
2
), pp.
141
146
.
46.
Azarm
,
S.
, and
Papalambros
,
P.
,
1984
, “
An Automated Procedure for Local Monotonicity Analysis
,”
ASME J. Mech. Transm. Autom. Des.
,
106
(
1
), pp.
82
89
.
47.
Hazelrigg
,
G. A.
,
1999
, “
On the Role and Use of Mathematical Models in Engineering Design
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
336
341
.
48.
Radhakrishnan
,
R.
, and
McAdams
,
D. A.
,
2005
, “
A Methodology for Model Selection in Engineering Design
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
378
387
.
49.
Zhou
,
J.
, and
Mayne
,
R. W.
,
1983
, “
Interactive Computing in the Application of Monotonicity Analysis to Design Optimization
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
2
), pp.
181
186
.
50.
Finger
,
S.
, and
Dixon
,
J. R.
,
1989
, “
A Review of Research in Mechanical Engineering Design. Part II: Representations, Analysis, and Design for the Life Cycle
,”
Res. Eng. Des.
,
1
(
2
), pp.
121
137
.
You do not currently have access to this content.