Abstract

A novel, synergy-based design for lower-limb, gait assistance exosuits is proposed in this paper. The general design philosophy is followed by the mathematical model that leads to the exosuit’s actuation system design from a certain set of postural synergies, which may reduce the number of total required actuators and, thus, the overall system weight and price. Cable extensions are chosen as the design variable upon which the principal component analysis is performed, given the high resulting cumulative variance that is obtained with few principal components. Expressions for the pulley radii are then derived and a general exosuit design is proposed, along with a novel transmission system that can combine any number of actuators to follow the gait movements from a synergy perspective. A basic testbench is also presented with such a transmission system implemented and an empirical set of results are shown with a varying number of actuators, proving that cable extensions and synergy-based design provide an excellent solution when reducing the number of actuation units in a walking-assistance exosuit.

References

1.
Rocon
,
E.
,
Ruiz
,
A. F.
,
Raya
,
R.
,
Schiele
,
A.
,
Pons
,
J. L.
,
Belda-Lois
,
J. M.
,
Poveda
,
R.
,
Vivas
,
M. J.
, and
Moreno
,
J. C.
,
2008
,
Human–Robot Physical Interaction
,
John Wiley and Sons, Ltd.
,
Hoboken, NJ
.
2.
Natali
,
C.
,
Poliero
,
T.
,
Sposito
,
M.
,
Graf
,
E.
,
Bauer
,
C.
,
Pauli
,
C.
,
Bottenberg
,
E.
,
Eyto
,
A.
,
O’Sullivan
,
L.
,
Hidalgo
,
A.
,
Scherly
,
D.
,
Stadler
,
K.
,
Caldwell
,
D.
, and
Ortiz
,
J.
,
2019
, “
Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
,”
Robotica
,
37
(
12
), pp.
1
21
.
3.
Quinlivan
,
B.
,
Asbeck
,
A.
,
Wagner
,
D.
,
Ranzani
,
T.
,
Russo
,
S.
, and
Walsh
,
C.
,
2015
, “
Force Transfer Characterization of a Soft Exosuit for Gait Assistance
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
4.
In
,
H.
,
Lee
,
H.
,
Jeong
,
U.
,
Kang
,
B. B.
, and
Cho
,
K.-J.
,
2015
, “
Feasibility Study of a Slack Enabling Actuator for Actuating Tendon-Driven Soft Wearable Robot Without Pretension
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1229
1234
.
5.
Cappello
,
L.
,
Binh
,
D. K.
,
Yen
,
S. C.
, and
Masia
,
L.
,
2016
, “
Design and Preliminary Characterization of a Soft Wearable Exoskeleton for Upper Limb
,”
Sixth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29
.
6.
Xiloyannis
,
M.
,
Cappello
,
L.
,
Binh
,
K. D.
,
Antuvan
,
C. W.
, and
Masia
,
L.
,
2017
, “
Preliminary Design and Control of a Soft Exosuit for Assisting Elbow Movements and Hand Grasping in Activities of Daily Living
,”
J. Rehabil. Assist. Technol. Eng.
,
4
(
1
).
7.
Liu
,
K.
,
Xiong
,
C.-H.
,
He
,
L.
,
Chen
,
W.-B.
, and
Huang
,
X.-L.
,
2018
, “
Postural Synergy Based Design of Exoskeleton Robot Replicating Human Arm Reaching Movements
,”
Rob. Auton. Syst.
,
99
, pp.
84
96
.
8.
Ding
,
Y.
,
Galiana
,
I.
,
Asbeck
,
A.
,
Quinlivan
,
B.
,
De Rossi
,
S. M. M.
, and
Walsh
,
C.
,
2014
, “
Multi-Joint Actuation Platform for Lower Extremity Soft Exosuits
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
1327
1334
.
9.
Asbeck
,
A. T.
,
Schmidt
,
K.
,
Galiana
,
I.
,
Wagner
,
D.
, and
Walsh
,
C. J.
,
2015
, “
Multi-Joint Soft Exosuit for Gait Assistance
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, IEEE, pp.
6197
6204
.
10.
Asbeck
,
A. T.
,
Schmidt
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Soft Exosuit for Hip Assistance
,”
Rob. Auton. Syst.
,
73
, pp.
102
110
.
11.
Lee
,
Y.
,
Kim
,
Y.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2058
2069
.
12.
Brown
,
C. Y.
, and
Asada
,
H. H.
,
2007
, “
Inter-Finger Coordination and Postural Synergies in Robot Hands Via Mechanical Implementation of Principal Components Analysis
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
2877
2882
.
13.
Xiloyannis
,
M.
,
Cappello
,
L.
,
Khanh
,
D. B.
,
Yen
,
S.-C.
, and
Masia
,
L.
,
2016
, “
Modelling and Design of a Synergy-Based Actuator for a Tendon-Driven Soft Robotic Glove
,”
2016 Sixth IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29
, pp.
1213
1219
.
14.
Bianchi
,
L.
,
Angelini
,
D.
,
Orani
,
G. P.
, and
Lacquaniti
,
F.
,
1998
, “
Kinematic Coordination in Human Gait: Relation to Mechanical Energy Cost
,”
J. Neurophysiol.
,
79
(
4
), pp.
2155
70
.
15.
Lim
,
B.
,
Ra
,
S.
, and
Park
,
F.
,
2005
, “
Movement Primitives, Principal Component Analysis, and the Efficient Generation of Natural Motions
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, IEEE, pp.
4630
4635
.
16.
Neilson
,
P.
, and
Neilson
,
M.
,
2010
, “
On Theory of Motor Synergies
,”
Human Movement Sci.
,
29
(
5
), pp.
655
83
.
17.
Jolliffe
,
I. T.
, and
Cadima
,
J.
,
2016
, “
Principal Component Analysis: A Review and Recent Developments
,”
Philos. Trans. R. Soc. A
,
374
(
2065
), p.
20150202
.
18.
Huang
,
B.
,
Xiong
,
C.
,
Chen
,
W.
,
Liang
,
J.
,
Sun
,
B. Y.
, and
Gong
,
X.
,
2021
, “
Common Kinematic Synergies of Various Human Locomotor Behaviours
,”
R. Soc. Open Sci.
,
8
(
4
), p.
210161
.
19.
Haufe
,
F. L.
,
Schmidt
,
K.
,
Duarte
,
J. E.
,
Wolf
,
P.
,
Riener
,
R.
, and
Xiloyannis
,
M.
,
2020
, “
Activity-Based Training With the Myosuit: A Safety and Feasibility Study Across Diverse Gait Disorders
,”
J. NeuroEng. Rehabil.
,
17
(
1
), p.
135
.
20.
Chen
,
L.
,
Chen
,
C.
,
Wang
,
Z.
,
Ye
,
X.
,
Liu
,
Y.
, and
Wu
,
X.
,
2021
, “
A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue
,”
Biosensors
,
11
(
7
), p.
215
.
21.
Cao
,
W.
,
Chen
,
C.
,
Hu
,
H.
,
Fang
,
K.
, and
Wu
,
X.
,
2021
, “
Effect of Hip Assistance Modes on Metabolic Cost of Walking With a Soft Exoskeleton
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
2
), pp.
426
436
.
22.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. NeuroEng. Rehabil.
,
13
(
1
), p.
43
.
23.
Tricomi
,
E.
,
Lotti
,
N.
,
Missiroli
,
F.
,
Zhang
,
X.
,
Xiloyannis
,
M.
,
Müller
,
T.
,
Crea
,
S.
,
Papp
,
E.
,
Krzywinski
,
J.
,
Vitiello
,
N.
, and
Masia
,
L.
,
2022
, “
Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
936
943
.
24.
Wang
,
X.
,
O’Dwyer
,
N.
, and
Halaki
,
M.
,
2013
, “
A Review on the Coordinative Structure of Human Walking and the Application of Principal Component Analysis
,”
Neural Regeneration Res.
,
8
(
7
), pp.
662
70
.
25.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
WIREs Comput. Stat.
,
2
(
4
), pp.
433
459
.
26.
Federolf
,
P.
,
Boyer
,
K.
, and
Andriacchi
,
T.
,
2013
, “
Application of Principal Component Analysis in Clinical Gait Research: Identification of Systematic Differences Between Healthy and Medial Knee-Osteoarthritic Gait
,”
J. Biomech.
,
46
(
13
), pp.
2173
2178
.
27.
Federolf
,
P. A.
,
2016
, “
A Novel Approach to Study Human Posture Control: ‘Principal Movements’ Obtained From a Principal Component Analysis of Kinematic Marker Data
,”
J. Biomech.
,
49
(
3
), pp.
364
370
.
28.
Fukuchi
,
C. A.
,
Fukuchi
,
R. K.
, and
Duarte
,
M.
,
2018
, “
A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals
,”
PeerJ
,
6
, p.
e4640
.
29.
Kibushi
,
B.
,
Moritani
,
T.
, and
Kouzaki
,
M.
,
2019
, “
Local Dynamic Stability in Temporal Pattern of Intersegmental Coordination During Various Stride Time and Stride Length Combinations
,”
Exp. Brain Res.
,
237
(
1
), pp.
257
271
.
30.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
John Wiley and Sons
,
Hoboken, NJ
.
31.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures.
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
67
.
32.
Letier
,
P.
,
Schiele
,
A.
,
Avraam
,
M.
,
Horodinca
,
M.
, and
Preumont
,
A.
,
2006
, “
Bowden Cable Actuator for Torque-Feedback in Haptic Applications
,”
IEEE International Workshop on Intelligent Robots and Systems (IROS)
,
Beijing, China
,
Oct. 9–15
.
33.
Borowski
,
A.
,
Metz
,
A.
, and
Sergi
,
F.
,
2018
, “
Dynamic Model of a Cable-Conduit Actuation for Interaction With Non-Passive Environments
,”
2018 IEEE Haptics Symposium (HAPTICS)
,
San Francisco, CA
,
Mar. 25–28
, pp.
40
45
.
34.
Bartenbach
,
V.
,
Schmidt
,
K.
,
Naef
,
M.
,
Wyss
,
D.
, and
Riener
,
R.
,
2015
, “
Concept of a Soft Exosuit for the Support of Leg Function in Rehabilitation
,”
2015 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Singapore
,
Aug. 11–14
, pp.
125
130
.
You do not currently have access to this content.