Abstract

Standard moving morphable component (MMC)-based topology optimization methods use free components with explicitly geometrical parameters as design units to obtain the optimal structural topology by moving, deforming, and covering such components. In this study, we intend to present a method for geometrically nonlinear explicit topology optimization using moving wide-Bézier components with constrained ends. Not only can the method efficiently avoid the convergence issues associated with nonlinear structural response analysis, but it can also alleviate the component disconnection issues associated with the standard MMC-based topology optimization methods. The numerical investigations proposed in this work indicate that the proposed method allows us to obtain results in accordance with the current literature with a more stable optimization process. In addition, the proposed method can easily achieve minimum length scale control without adding constraints.

References

1.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
2.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
London
.
3.
Christensen
,
P. W.
, and
Klarbring
,
A.
,
2008
,
An Introduction to Structural Optimization
, Vol.
153
,
Springer Science & Business Media
,
Amsterdam, The Netherlands
.
4.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
5.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
6.
Rozvany
,
G. I.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
217
237
.
7.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-Scale Structures: A Review
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1
26
.
8.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
9.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.
10.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
11.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
12.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
.
13.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2015
, “
Structural Topology and Shape Optimization Using a Level Set Method With Distance-Suppression Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1214
1239
.
14.
Zhu
,
B.
,
Wang
,
R.
,
Li
,
H.
, and
Zhang
,
X.
,
2018
, “
A Level Set Method With a Bounded Diffusion for Structural Topology Optimization
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071402
.
15.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
16.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
John Wiley & Sons
,
West Sussex, UK
.
17.
Han
,
Y.
,
Xu
,
B.
,
Wang
,
Q.
, and
Liu
,
Y.
,
2021
, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures Subjected to Inertial Loads
,”
Adv. Eng. Soft.
,
155
, p.
102897
.
18.
Takezawa
,
A.
,
Nishiwaki
,
S.
, and
Kitamura
,
M.
,
2010
, “
Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis
,”
J. Comput. Phys.
,
229
(
7
), pp.
2697
2718
.
19.
Wang
,
M. Y.
, and
Zhou
,
S.
,
2004
, “
Phase Field: A Variational Method for Structural Topology Optimization
,”
CMES-Comput. Model. Eng. Sci.
,
6
(
6
), p.
547
.
20.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometricallyła New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
21.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization Via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
22.
Du
,
B.
,
Yao
,
W.
,
Zhao
,
Y.
, and
Chen
,
X.
,
2019
, “
A Moving Morphable Voids Approach for Topology Optimization With Closed B-splines
,”
ASME J. Mech. Des.
,
141
(
8
), p.
081401
.
23.
Wang
,
R.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
Imposing Minimum Length Scale in Moving Morphable Component (MMC)-Based Topology Optimization Using an Effective Connection Status (ECS) Control Method
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
667
693
.
24.
Wang
,
Y.
,
Wang
,
Z.
,
Xia
,
Z.
, and
Poh
,
L. H.
,
2018
, “
Structural Design Optimization Using Isogeometric Analysis: A Comprehensive Review
,”
Comput. Model. Eng. Sci.
,
117
(
3
), pp.
455
507
.
25.
Christiansen
,
A. N.
,
Nobel-Jørgensen
,
M.
,
Aage
,
N.
,
Sigmund
,
O.
, and
Bærentzen
,
J. A.
,
2014
, “
Topology Optimization Using an Explicit Interface Representation
,”
Struct. Multidiscipl. Optim.
,
49
(
3
), pp.
387
399
.
26.
Van Dijk
,
N.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2012
, “
Explicit Level-Set-Based Topology Optimization Using an Exact Heaviside Function and Consistent Sensitivity Analysis
,”
Int. J. Numer. Methods Eng.
,
91
(
1
), pp.
67
97
.
27.
Bell
,
B.
,
Norato
,
J.
, and
Tortorelli
,
D.
,
2012
, “
A Geometry Projection Method for Continuum-Based Topology Optimization of Structures
,”
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Indianapolis, IN
,
Sept. 17–19
, p.
5485
.
28.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
29.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
30.
Hoang
,
V.-N.
, and
Jang
,
G.-W.
,
2017
, “
Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
153
173
.
31.
Hoang
,
V.-N.
,
Nguyen
,
H. B.
, and
Nguyen-Xuan
,
H.
,
2020
, “
Explicit Topology Optimization of Nearly Incompressible Materials Using Polytopal Composite Elements
,”
Adv. Eng. Soft.
,
149
, p.
102903
.
32.
Yang
,
H.
, and
Huang
,
J.
,
2020
, “
An Explicit Structural Topology Optimization Method Based on the Descriptions of Areas
,”
Struct. Multidiscipl. Optim.
,
61
(
3
), pp.
1123
1156
.
33.
Chu
,
S.
,
Yang
,
Z.
,
Xiao
,
M.
,
Qiu
,
H.
,
Gao
,
K.
, and
Gao
,
L.
,
2020
, “
Explicit Topology Optimization of Novel Polyline-Based Core Sandwich Structures Using Surrogate-Assisted Evolutionary Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
369
, p.
113215
.
34.
Zhu
,
B.
,
Chen
,
Q.
,
Wang
,
R.
, and
Zhang
,
X.
,
2018
, “
Structural Topology Optimization Using a Moving Morphable Component-Based Method Considering Geometrical Nonlinearity
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081403
.
35.
Wein
,
F.
,
Dunning
,
P. D.
, and
Norato
,
J. A.
,
2020
, “
A Review on Feature-Mapping Methods for Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
1597
1638
.
36.
Mei
,
Y.
,
Wang
,
X.
, and
Cheng
,
G.
,
2008
, “
A Feature-Based Topological Optimization for Structure Design
,”
Adv. Eng. Soft.
,
39
(
2
), pp.
71
87
.
37.
Zhang
,
W.
,
Li
,
D.
,
Zhou
,
J.
,
Du
,
Z.
,
Li
,
B.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
381
413
.
38.
Gai
,
Y.
,
Zhu
,
X.
,
Zhang
,
Y. J.
,
Hou
,
W.
, and
Hu
,
P.
,
2020
, “
Explicit Isogeometric Topology Optimization Based on Moving Morphable Voids With Closed B-spline Boundary Curves
,”
Struct. Multidiscipl. Optim.
,
61
(
3
), pp.
963
982
.
39.
Bai
,
J.
, and
Zuo
,
W.
,
2020
, “
Hollow Structural Design in Topology Optimization Via Moving Morphable Component Method
,”
Struct. Multidiscipl. Optim.
,
61
(
1
), pp.
187
205
.
40.
Hoang
,
V.-N.
,
Nguyen
,
N.-L.
, and
Nguyen-Xuan
,
H.
,
2020
, “
Topology Optimization of Coated Structure Using Moving Morphable Sandwich Bars
,”
Struct. Multidiscipl. Optim.
,
61
(
2
), pp.
491
506
.
41.
Zhu
,
B.
,
Wang
,
R.
,
Wang
,
N.
,
Li
,
H.
,
Zhang
,
X.
, and
Nishiwaki
,
S.
,
2021
, “
Explicit Structural Topology Optimization Using Moving Wide Bezier Components With Constrained Ends
,”
Struct. Multidiscipl. Optim.
,
64
, pp.
53
70
.
42.
Xue
,
R.
,
Liu
,
C.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Tang
,
S.
,
Du
,
Z.
, and
Guo
,
X.
,
2019
, “
Explicit Structural Topology Optimization Under Finite Deformation Via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
798
818
.
43.
Tai
,
K.
, and
Chee
,
T.
,
2000
, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
560
566
.
44.
Wang
,
S.
, and
Tai
,
K.
,
2004
, “
Graph Representation for Structural Topology Optimization Using Genetic Algorithms
,”
Comput. Struct.
,
82
(
20–21
), pp.
1609
1622
.
45.
Wang
,
N.
, and
Yang
,
Y.
,
2009
, “
Structural Design Optimization Subjected to Uncertainty Using Fat Bezier Curve
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
1–4
), pp.
210
219
.
46.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2005
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
551
558
.
47.
Osher
,
S.
, and
Fedkiw
,
R.
,
2006
,
Level Set Methods and Dynamic Implicit Surfaces
, Vol.
153
,
Springer Science & Business Media
,
New York
.
48.
Jung
,
D.
, and
Gea
,
H. C.
,
2004
, “
Topology Optimization of Nonlinear Structures
,”
Finite Elements Anal. Des.
,
40
(
11
), pp.
1417
1427
.
49.
Buhl
,
T.
,
Pedersen
,
C. B.
, and
Sigmund
,
O.
,
2000
, “
Stiffness Design of Geometrically Nonlinear Structures Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
19
(
2
), pp.
93
104
.
50.
Gea
,
H. C.
, and
Luo
,
J.
,
2001
, “
Topology Optimization of Structures With Geometrical Nonlinearities
,”
Comput. Struct.
,
79
(
20–21
), pp.
1977
1985
.
51.
Huang
,
X.
, and
Xie
,
Y.
,
2008
, “
Topology Optimization of Nonlinear Structures Under Displacement Loading
,”
Eng. Struct.
,
30
(
7
), pp.
2057
2068
.
52.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2015
, “
Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
422
441
.
53.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Prentice Hall
,
Hoboken, NJ
.
54.
De Borst
,
R.
,
Crisfield
,
M. A.
,
Remmers
,
J. J.
, and
Verhoosel
,
C. V.
,
2012
,
Nonlinear Finite Element Analysis of Solids and Structures
,
John Wiley & Sons
,
Darmstadt, Germany
.
55.
Wang
,
F.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Interpolation Scheme for Fictitious Domain Techniques and Topology Optimization of Finite Strain Elastic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
453
472
.
56.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
A 213-line Topology Optimization Code for Geometrically Nonlinear Structures
,”
Struct. Multidiscipl. Optim.
,
59
(
5
), pp.
1863
1879
.
57.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
58.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1243
1260
.
59.
Zhang
,
W.
,
Zhou
,
J.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Structural Complexity Control in Topology Optimization Via Moving Morphable Component (MMC) Approach
,”
Struct. Multidiscipl. Optim.
,
56
(
3
), pp.
535
552
.
60.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotesła New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
61.
Zhou
,
H.
,
2010
, “
Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111003
.
62.
Zhu
,
B.
,
Zhang
,
X.
, and
Wang
,
N.
,
2013
, “
Topology Optimization of Hinge-Free Compliant Mechanisms With Multiple Outputs Using Level Set Method
,”
Struct. Multidiscipl. Optim.
,
47
(
5
), pp.
659
672
.
63.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
64.
Krishnakumar
,
A.
, and
Suresh
,
K.
,
2015
, “
Hinge-Free Compliant Mechanism Design Via the Topological Level-Set
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031406
.
65.
da Silva
,
G. A.
,
Beck
,
A. T.
, and
Sigmund
,
O.
,
2019
, “
Topology Optimization of Compliant Mechanisms With Stress Constraints and Manufacturing Error Robustness
,”
Comput. Methods Appl. Mech. Eng.
,
354
, pp.
397
421
.
66.
Carstensen
,
J. V.
, and
Guest
,
J. K.
,
2018
, “
Projection-Based Two-Phase Minimum and Maximum Length Scale Control in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
5
), pp.
1845
1860
.
67.
Zhang
,
W.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
327
355
.
You do not currently have access to this content.